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Abstract. We establish a class of area-angular momentum-charge inequalities satisfied by stable

marginally outer trapped surfaces in 5-dimensional minimal supergravity which admit a U(1)2 sym-

metry. A novel feature is the fact that such surfaces can have the nontrivial topologies S1 × S2 and

L(p, q). In addition to two angular momenta, they may be characterized by ‘dipole charge’ as well as

electric charge. We show that the unique geometries which saturate the inequalities are the horizon

geometries corresponding to extreme black hole solutions. Analogous inequalities which also include

contributions from a positive cosmological constant are also presented.

1. Introduction

There has been significant progress in establishing sharp geometric inequalities, motivated in
part by black hole thermodynamics, which relate the area A, angular momenta J , and charge
Q of axisymmetric stable marginally outer trapped surfaces (MOTS) in spacetimes satisfying an
appropriate energy condition [8, 9]. In spacetime dimension D = 4 a typical example of such an
inequality [16] is given by

(1.1) A ≥ 4π
√

4J 2 +Q4,

where equality is achieved if and only if the induced geometry of the MOTS arises from a spatial
cross section of the event horizon of the extreme Kerr-Newman black hole. This class of results has
been extended to include contributions from a positive cosmological constant [4, 17], and studied in
the setting of Einstein-Maxwell-axion-dilaton gravity [15, 36, 40]. They have also been used to find
lower bounds for horizon area in terms of (ADM) mass, angular momentum, and charge [10].

Given the significant interest in black hole solutions in spacetime dimension D > 4 [14], chiefly
motivated from the physical point of view by string theory, a natural problem is to generalize such
inequalities to this setting. As is well known, D = 5 asymptotically flat black holes arise as certain
intersecting configurations of D-branes, which are dynamical extended objects in string theory. A
classic achievement of string theory is the calculation of the Bekenstein-Hawking entropy S = A/4
for a large class of extremal 5-dimensional black holes from a quantum statistical counting of such
configurations [38]. Inequalities relating the area, angular momenta, and charge of dynamical black
holes can be translated into corresponding relations on the quantum numbers that characterize the
string states.

This program has been initiated in the work of Hollands [21] (see also [41]), who proved an exten-
sion of (1.1) to D > 4 for vacuum spacetimes, possibly with a positive cosmological constant. The
(D − 2)-dimensional MOTS B was assumed to admit a U(1)D−3 isometry group. This requirement
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implies that B must be diffeomorphic to S3 × TD−5, S1 × S2 × TD−5, or L(p, q) × TD−5 where Tn

is the n-dimensional torus [23]. In particular the elegant inequality

(1.2) A ≥ 8π
√
|J+J−|

is shown to hold for all stable B, where J± = Jivi± are certain linear combinations of angular

momenta Ji, associated to each U(1) generator, and vi± are a set of integers which determine the
topology of B. As before, the unique geometries that saturate the inequality are the extreme horizon
geometries corresponding to each of the allowed topologies. The possible vacuum horizon geometries
are completely classified and are in fact known explicitly in closed form [22, 27].

It is worthwhile to elaborate on this point. The term near-horizon geometry refers to the precise
notion of the spacetime geometry in a neighborhood of a degenerate Killing horizon (for a com-
prehensive review, see [30]). For example, the near-horizon geometry associated to the extreme
Reissner-Nordström horizon is a product metric on AdS2 × S2, while the near-horizon geometry
associated to the extreme Kerr horizon is a twisted S2 bundle over AdS2. It is important to note
that different extreme black holes can have the same associated near-horizon geometry (see [33] for
an explicit example in D = 5). A spatial cross section of the event horizon (which is a MOTS) is
a (D− 2)-Riemannian manifold embedded in the D-dimensional Lorentzian near-horizon spacetime.
Therefore, when stating the rigidity results for the area inequalities satisfied by MOTS, we must state
that those saturating the inequality are the extreme horizon geometries induced from a near-horizon
geometry, rather than a particular extreme black hole solution; indeed, there could be more than
one extreme black hole that gives rise to the same induced geometry on B. Of course, in D = 4, an
axisymmetric extreme electrovacuum black hole must be an extreme member of the Kerr-Newman
family [7], and so we can state the rigidity result simply in terms of the induced metric on the horizon
of an extreme black hole solution without reference to its near-horizon geometry.

The purpose of the present work is to establish an extension of (1.2) valid for 5-dimensional
black holes which carry charges sourced by a Maxwell field F . The simplest relevant theory for this
purpose is minimal D = 5 supergravity. As explained in [2], this theory admits a harmonic map
formulation for stationary U(1)2-invariant solutions (g, F ) which plays a key role in establishing the
relevant geometric inequalities. Moreover, all explicitly known charged 5-dimensional black holes
(e.g. the charged Myers-Perry solution, the natural generalization of Kerr-Newman) are solutions
of supergravity; these solutions will serve as model maps in the construction of the proof. An
added motivation is that it is this theory, and not standard Einstein-Maxwell theory, that arises as
a consistent reduction of the ten or eleven-dimensional supergravity theories that govern the low-
energy dynamics of string theory. Therefore minimal supergravity is natural to consider for a number
of reasons.

The key difference between the supergravity setting and the pure vacuum case analyzed in [21]
is that the space of extreme black hole horizons is significantly larger. As we will show, one can
produce a lower bound for the area of admissible MOTS with fixed angular momenta Ji and charge
Q in terms of an ‘area functional’, which is in turn a certain renormalized Dirichlet energy for
singular maps taking [−1, 1] → G2(2)/SO(4); here G2(2) refers to the noncompact real Lie group
whose complexification is G2, and the notation 2(2) refers respectively to the rank and character
of the group. The critical points of this functional are simply the harmonic maps corresponding to
horizon geometries of U(1)2-invariant extreme black holes with the same Ji and Q. In contrast to
the D = 5 vacuum case, however, a complete classification of all allowed extreme horizon geometries
is an open problem (see [29] for a partial classification). Indeed, for fixed horizon topology B, one can
have distinct families of extreme horizon geometries. For example, there are non-isometric families
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of extreme black ring horizon geometries (B = S1 × S2). In particular, these distinct families have
different expressions for the area in terms of conserved charges. Nevertheless, for a given topology
it is possible to identify a unique extreme horizon geometry by specifying the angular momenta,
electric charge, and so-called ‘dipole charge’.

It is worth emphasizing how this is qualitatively different from the D = 4 Einstein-Maxwell case.
For fixed angular momentum and electric charge, the unique axisymmetric extreme horizon geometry
is that of the extreme Kerr-Newman black hole [6]. This fact underlies the single inequality (1.1).
In our case, rather than establishing a single unified inequality (1.2) valid for all B, we will have
different inequalities which depend on both the topology of B and the range of parameters associated
with conserved charges.

2. Description of Main Results

Consider a five dimensional spacetime (M,g, F ) where M is a smooth oriented manifold, g is a
Lorentzian metric with signature (−,+,+,+,+), and F is a closed 2-form representing a Maxwell
field. Assuming that F = dA, the action for D = 5 minimal supergravity is given by

(2.1) S =

∫
M

(R− 12Λ) ? 1− 1

2
F ∧ ?F − 1

3
√

3
F ∧ F ∧ A,

where ? is the Hodge dual operator associated to g and Λ ≥ 0 is the cosmological constant. The
field equations are then expressed as

Rab =
1

2
FacF

c
b − 1

12 |F |
2gab + 4Λgab,

d ? F +
1√
3
F ∧ F = 0.

(2.2)

Note that in contrast to pure Einstein-Maxwell theory, d ? F 6= 0. If H2(M) 6= 0 then A appearing
in the action is not globally defined and must be constructed from local potentials.

Recall that a marginally outer trapped surfaces (MOTS) is a 3-dimensional spacelike submanifold
B embedded in the spacetime (M, g, F ) with θn = 0. Here θn is the expansion with respect to the
future pointing outward null normal n and is defined by

(2.3) θnεγ = εγdivγn = Lnεγ =

(
1

2
γabLnγab

)
εγ ,

where L denotes Lie differentiation,

(2.4) γab = 2l(anb) + gab

is the induced metric on B with volume form εγ , and l is the future pointing inward null normal such
that g(n, l) = −1. The MOTS will be referred to as stable if Llθn ≤ 0.

The total electric charge contained within B is given by

(2.5) Q =
1

16π

∫
B

(
?F +

1√
3
A ∧ F

)
.

Inclusion of the second term in the integrand is motivated by the fact that, as a consequence of the
Maxwell equation in (2.2), the full integrand is a closed 3-form. If, in addition H2(B) is non-trivial
(e.g. B = S1 × S2), a ‘dipole charge’ may be defined by

(2.6) D[C] =
1

2π

∫
C
F
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for each homology class [C] ∈ H2(B). From the D = 4 setting, this may seem reminiscent of the
magnetic charge, however in D = 5 it turns out that there is no natural notion of a conserved
magnetic charge [2]. Note that if B = S3 (or indeed any lens space), H2(B) is trivial.

In order to define a suitable notion of angular momenta, let η(i), i = 1, 2 denote the Killing fields

with orbits of period 2π that generate the U(1)2 isometry, so that

(2.7) Lη(i)
g = 0 , Lη(i)

F = 0.

The angular momentum associated with the generator η(i) is then defined by

(2.8) Ji =
1

16π

∫
B
?d[g(η(i), ·)] +A(η(i))

(
?F +

2

3
√

3
A ∧ F

)
.

The first term of the integrand comes from the standard Komar integral, and the remaining terms
are then appended in order to obtain a closed 3-form yielding a conserved quantity. This is the
spacetime version of the definition in terms of initial data used for the proof of the mass-angular
momentum-charge inequality [2]. Moreover, when F = 0 this reduces to the definition of angular
momenta used in the proof of the vacuum inequality (1.2). Note that there is an SL(2,Z) freedom
in choosing a basis for the U(1)2 generators η(i), and hence to define the two angular momenta.

Theorem 2.1. Let (M,g, F ) be a bi-axisymmetric solution of 5-dimensional minimal supergravity
with Λ = 0. If B is a bi-axisymmetric stable MOTS diffeomorphic to S3 then

(2.9) A ≥ 8π

√∣∣∣∣J1J2 +
4Q3

3π
√

3

∣∣∣∣,
and equality holds if and only if (B, γ, F ) arises from the near-horizon geometry of an extreme charged
Myers-Perry black hole.

It is important to note that the rigidity statement does not imply that the harmonic map data
arising from (B, γ, F ) agree with that of the specified near-horizon geometry. Rather, by stating that
the given data ‘arise’ from the near-horizon geometry of an extreme charged Myers-Perry black hole,
we mean that the given data are related to this near-horizon geometry through an isometry in the
target symmetric space G2(2)/SO(4). The same interpretation applies to the remaining theorems of
this section.

We remark that in the pure vacuum case Q = 0 and the above inequality reduces to (1.2), whereas
if either of the independent angular momenta Ji vanish then

(2.10) A ≥ 16

√
π|Q|3

3
√

3
,

which is saturated if and only if the MOTS arises from the near-horizon geometry of the extreme
Reissner-Nordström black hole.

Theorem 2.2. Let (M,g, F ) be a bi-axisymmetric solution of 5-dimensional minimal supergrav-
ity with Λ = 0. Let B be a bi-axisymmetric stable MOTS diffeomorphic to S1 × S2 with J1, J2

representing the angular momentum associated with S1, S2 respectively.

(a) If Q = 0 and J2 = 0 then

(2.11) A ≥ 4π

√
π|J1D3|

3
√

3
,
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and equality holds if and only if (B, γ, F ) arises from the near-horizon geometry of an extreme
singly-spinning dipole black ring.

(b) If Q = 0 and J 2
2 ≥ π

12
√

3
J1D3 then

(2.12) A ≥ 8π

√
J 2

2 −
π

12
√

3
J1D3,

and equality holds if and only if (B, γ, F ) arises from the near-horizon geometry of an extreme
magnetic boosted Kerr string.

Theorem 2.3. Let (M,g, F ) be a bi-axisymmetric solution of 5-dimensional minimal supergravity
with Λ = 0. If B is a bi-axisymmetric stable MOTS diffeomorphic to the lens space L(p, 1), with
J1 = −J2 = J and 4Q3 ≥ 3p

√
3πJ 2 then

(2.13) A ≥ 8π

√
4pQ3

3
√

3π
− p2J 2,

and equality holds if and only if (B, γ, F ) arises from the near-horizon geometry of an extreme
supersymmetric black lens solution [32, 39].

These three theorems yield area-angular momentum-charge inequalities for each of the possible
topologies associated with bi-axisymmetric stable MOTS. It should be noted that several of the
results require certain restrictions on the parameters found within the inequalities. These restrictions
arise from the particular nature of the known near-horizon geometries on which the inequalities are
modeled. Our method of proof is sufficiently robust that should new near-horizon geometries be
found, an immediate consequence would be new area-angular momentum-charge inequalities for
stable MOTS with the same topology. Thus modulo the classification of near-horizon geometries for
D = 5 minimal supergravity, the techniques of this paper are able to produce all possible inequalities
of this type.

The following result differs from those above in that it includes contributions from a cosmological
constant Λ ≥ 0 within the inequality. We are only able to treat the case of spherical topology in this
context due to the lack of known explicit solutions with other topologies; in fact it has been shown
that ring type de Sitter near-horizon geometries do not exist in vacuum [26]. Restrictions on the
parameters are needed here only to simplify the expression of the inequality. Indeed, our proof is
valid for the full range of parameters, however a precise statement of the inequality in this generality
is too unwieldy.

Theorem 2.4. Let (M,g, F ) be a bi-axisymmetric solution of 5-dimensional minimal supergravity
with Λ > 0, and let B be a bi-axisymmetric stable MOTS diffeomorphic to S3.

(a) If J := ±Ji for i = 1, 2 and Q = 0 then

(2.14)
Λ3A6

210π6J 2
≤

(
A
√
A2 + 512π2J 2 −A2 − 128π2J 2

)3

(
A−
√
A2 + 512π2J 2

)4 ,

and equality holds if and only if (B, γ, F ) arises from the near-horizon geometry of an extreme
Chong-Cvetic-Lu-Pope (CCLP) black hole with positive cosmological constant.

(b) If J1 = J2 = 0 then

(2.15) 64π2Q2 ≤ 12

(
Aπ

2

)4/3

− 6ΛA2,
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and equality holds if and only if (B, γ, F ) arises from the near-horizon geometry of an extreme
Reissner-Nordström-de Sitter black hole.

3. Construction of Potentials and Relation to Conserved Charges

In this section we construct scalar potentials, and demonstrate how these potentials encode the
charges and angular momenta defined above. The procedure follows that given in [29] specialized to
the case of the theory (2.1).

Observe that since dF = 0, Cartan’s formula LX = ιXd + dιX may be used to show that the
following 1-forms are closed, yielding the existence of scalar potentials satisfying

(3.1) dψi = ιη(i)
F,

where ι denotes the operation of interior product. These may be interpreted as magnetic potentials
and are globally defined in a tubular neighborhood M̃ of B, since the orbit space M̃/U(1)2 is simply
connected [25] and the potentials are functions on the orbit space. To see this last point, note that
the quantities

(3.2) Lη(i)
ψj = ιη(i)

ιη(j)
F

are constants by standard arguments, and since the η(i) vanish at the rotation axes these constants
are zero.

Now define the 1-form

(3.3) Υ = −ιη(1)
ιη(2)

? F

and observe that

(3.4) dΥ =
1√
3
ιη(1)

ιη(2)
d (A ∧ F ) =

1√
3
d
(
ψ1dψ2 − ψ2dψ1

)
.

This implies the existence of an electric potential satisfying

(3.5) dχ = Υ− 1√
3

(
ψ1dψ2 − ψ2dψ1

)
.

With the same reasoning as above, it may be shown that this potential is also globally defined.
In order to construct charged twist potentials for the angular momentum consider the 1-forms

(3.6) Θi = ?(η(1) ∧ η(2) ∧ dη(i)),

which satisfy

(3.7) dΘi = 2 ? (η(1) ∧ η(2) ∧ Ric(η(i)))

where Ric denotes the Ricci tensor of the spacetime metric g. With the help of the Einstein equations
(2.2), an involved calculation [29] shows that

(3.8) dΘi = −Υ ∧ ιη(i)
F = d

[
ψi

(
dχ+

1

3
√

3
(ψ1dψ2 − ψ2dψ1)

)]
.

It follows that there exist globally defined twist potentials such that

(3.9) dζi = Θi − ψi
[
dχ+

1

3
√

3
(ψ1dψ2 − ψ2dψ1)

]
.

It will now be shown how these potentials are related to the various charges associated with the
MOTS B. Since B is bi-axisymmetric the isometry generators η(i) are tangent to B. We may then
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introduce 2π-periodic angular coordinates φi on B adapted to the symmetries, so that η(i) = ∂/∂φi.
A third coordinate function x arises from the volume form by

(3.10) dx = CVolγ(η(1), η(2), ·),

where C is a constant. According to [25] the 1-dimensional orbit space B/U(1)2 is diffeomorphic to a
closed interval, and the constant C is chosen so that the orbit space is parameterized by x ∈ [−1, 1].
In order to compute the electric charge in terms of the potential χ, observe that if ω is a 3-form on
B then

(3.11)

∫
B
ω = 4π2

∫ 1

−1
ιη(2)

ιη(1)
ω.

Then using the definition (2.5), (3.3), (3.4), and (3.5) that

(3.12) Q =
π

4

∫ 1

−1
dχ =

π

4
(χ(1)− χ(−1)) .

Next suppose that B = S1 × S2 and
∫
S2 F 6= 0, so that the vector potential A is not globally

defined. From (3.1) it follows that F = dφi ∧ dψi, and hence

(3.13) D =
1

2π

∫
S2

F = vi(ψi(−1)− ψi(1)),

where viη(i) (vi ∈ Z) is the Killing field that vanishes at the poles of the S2.
Finally we turn to the angular momenta (2.8). First note that

(3.14) ιη(2)
ιη(1)

[
A(η(i))

(
?F +

2

3
√

3
A ∧ F

)]
= −ψi

[
dχ+

1

3
√

3

(
ψ1dψ2 − ψ2dψ1

)]
.

Moreover, the formula

(3.15) ιX ? ς = (−1)4−k ? (X ∧ ς)

is valid for k-forms ς on 5-dimensional Lorentzian manifolds and reveals that

(3.16) ιη(2)
ιη(1)

? d[g(η(i), ·)] = Θi.

Altogether this yields

(3.17) Ji =
π

4

∫ 1

−1

(
Θi − ψi

[
dχ+

1

3
√

3

(
ψ1dψ2 − ψ2dψ1

)])
=
π

4

∫ 1

−1
dζi =

π

4

(
ζi(1)− ζi(−1)

)
.

4. The Area Functional

We now turn to deriving a lower bound on the area of a bi-axisymmetric stable MOTS B in terms
of a certain area functional. The critical points of this functional will be shown to correspond to
spacetimes that describe, in a precise sense, the geometry in a neighborhood of a (stationary) extreme
black hole. These near-horizon geometries are solutions of the spacetime Einstein equations in their
own right, and will play the role of minimizers in what follows.

In the previous section coordinates (x, φ1, φ2) where introduced on B in which the φi are adapted
to the U(1)2 isometry and x parameterizes the orbit space B/U(1)2 ∼= [−1, 1]. As in [21] the induced
metric on B takes the following form when expressed in these coordinates

(4.1) γmndy
mdyn =

dx2

C2 detλ
+ λijdφ

idφj ,
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where the constant C > 0 has length dimension −3 and is related to the area of B by

(4.2) A = 8π2C−1.

The topology of B is characterized by the integer linear combinations of Killing fields that vanish at
the endpoints x = ±1, which represent the fixed points of the torus action. Suppose that ai±η(i) → 0

as x → ±1, with ai± ∈ Z. The matrix λij is rank 2 for x ∈ (−1, 1) and has a 1-dimensional kernel

at x = ±1 spanned by ai±, that is λija
i
± → 0 at the endpoints. Without loss of generality it may be

assumed that a+ = (1, 0), a− = (q, p) for some p, q ∈ Z with gcd(p, q) = 1. We have (q, p) = (0,±1)
for S3 topology, (q, p) = (±1, 0) for S1 × S2 topology, and L(p, q) otherwise [21]. Note that the
absence of conical singularities requires

(4.3) lim
x→±1

(1− x2)2

detλ · ai±a
j
±λij

= C2.

Following [21, 22, 34], Gaussian null coordinates (u, r, ym) may be introduced in a neighborhood
of the MOTS B. Here n = ∂u and l = ∂r are future pointing null vectors which coincide with the
normal vectors of the same notation in Section 2 on B, and satisfy g(n, l) = −1. The coordinates
ym are Lie transported off of B by n and l. This process yields a foliation of the neighborhood of
B, with parameters (u, r), whose leaves are denoted by B(u, r) and for which B(0, 0) = B. It can be
shown that in these coordinates the spacetime metric takes the Gaussian null form

(4.4) g = −2du
(
dr − αr2du− rβmdym

)
+ γmndy

mdyn,

where α is a smooth function, β = βmdy
m is a 1-form, and γ is the induced metric on B(u, r). Note

that this expression may be simplified with the help of the coframe

(4.5) e+ = du, e− = dr − αr2du− r(βxdx+ βidφ
i), ex =

dx

C
√

detλ
, ei = dφi,

so that

(4.6) g = −2e+e− + (ex)2 + λije
iej .

Lemma 4.1. Let (M,g, F ) be a bi-axisymmetric solution of 5-dimensional minimal supergravity,
and let B be a bi-axisymmetric stable MOTS. For any bi-axisymmetric ϕ ∈ C∞(B) the stability
inequality holds

(4.7)

∫
B

2|∇ϕ|2γ +

(
Rγ +

1

2

[
〈β,N〉2γ − |β|2γ

]
− 2T (n, l)− 12Λ

)
ϕ2 ≥ 0,

where Rγ is the scalar curvature of B, N = C
√

detλ∂x is the unit normal to the Killing directions
η(i), and T denotes the stress-energy tensor.

Proof. A computation [24] shows that

(4.8) Rγ − divγβ −
1

2
|β|2γ − 2T (n, l)− 12Λ = −2θnθl − 2Llθn.

Since B is a stable MOTS θn = 0 and Llθn ≤ 0. It follows that

(4.9) Rγ − divγβ −
1

2
|β|2γ − 2T (n, l)− 12Λ ≥ 0.

Then multiplying by ϕ2, integrating the divergence term by parts, and applying Young’s inequality
yields the desired result. �
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We now seek to express the integrand of (4.7) in terms of the potentials of Section 3 and the fiber
metric λ. Let βi = β(η(i)) and βi = λijβj , then a calculation gives

η(1) ∧ η(2) ∧ dη(i) =βi(−e+ ∧ e− − re+ ∧ β) ∧ (detλe1) ∧ e2

− rλij(∂xβj) detλe+ ∧ (C
√

detλex) ∧ e1 ∧ e2.
(4.10)

Evaluating at r = 0 yields

(4.11) βi = CΘi
x,

where

(4.12) Θi
x = Θi(∂x) = ∂xζ

i + ψi
(
∂xχ+

1

3
√

3
(ψ1∂xψ

2 − ψ2∂xψ
1)

)
.

It follows that

(4.13) |β|2γ = 〈β,N〉2γ + λijβiβj = 〈β,N〉2γ + C2λijΘi
xΘj

x.

Furthermore a computation [21] shows that

(4.14) Rγ = C2 detλ

[
−∂

2
x detλ

detλ
+

1

4

(∂x detλ)2

(detλ)2
− 1

4
Tr(λ−1∂xλ)2

]
.

We now turn to the Maxwell field in order to compute the relevant portion of the stress-energy
tensor. As shown in [29], this field may be expressed as

(4.15) F =
1

detλ

[
?
(
η(2) ∧ η(1) ∧Υ

)
+ (detλ)λijη(i) ∧ dψj

]
.

Since χ and ψi are functions of x alone, and

(4.16) Υx = Υ(∂x) = ∂xχ+
1√
3

(
ψ1∂xψ

2 − ψ2∂xψ
1
)
,

it follows that

(4.17) F = −CΥxdu ∧ e− − rCΥxβidu ∧ dφi + rβi∂xψ
idu ∧ dx− ∂xψidx ∧ dφi.

Next note that

(4.18) Tab =
1

8
(?F )acd(?F ) cd

b +
1

4
FacF

c
b .

Since n = ∂u and l = ∂r, a computation shows that (at r = 0)

(4.19) (ιnF )c(ιlF )c = C2Υ2
x.

In order to deal with the term involving ?F , observe that

(4.20) ?(e+ ∧ e−) = −Volγ = −C−1dx ∧ dφ1 ∧ dφ2, ?(ex ∧ ei) = εije
+ ∧ e− ∧ ej ,

where ε is the volume form associated with λ. From (4.15) we then have

(4.21) ?F = CΥxVol(γ)− C(∂xψi)
√

detλεije
+ ∧ e− ∧ ej ,

which implies

(4.22) (ιn ? F )cd(ιl ? F )cd = 2C2(detλ)λij∂xψ
i∂xψ

j .

Therefore at r = 0

(4.23) T (n, l) =
C2

4

(
Υ2
x + (detλ)λij∂xψ

i∂xψ
j
)
.
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It remains to choose ϕ and compute its Dirichlet energy density. Let ξ ∈ C∞(B) be a particular
smooth positive function (of x) associated to the relevant extreme stationary black hole solution of
5D minimal supergravity, which satisfies ξ = 1 when Λ = 0. Then set

(4.24) ϕ =

√
ξ

(1− x2)

detλ
=
√
ξϕ̄.

Note that

(4.25) ∇ϕ =
∇ξ
2

√
ϕ̄

ξ
+
∇ϕ̄
2

√
ξ

ϕ̄
, |∇ϕ|2 =

|∇ξ|2

4

ϕ̄

ξ
+
|∇ϕ̄|2

4

ξ

ϕ̄
+

1

2
∇ξ · ∇ϕ̄,

where

(4.26)
|∇ϕ̄|2

4ϕ̄
= −C2 +

C2

1− x2
+ C2x

∂x detλ

detλ
+
C2(1− x2)

4

(∂x detλ)2

(detλ)2
.

By combining these formulae we find that the integrand of (4.7) takes the form

− C2(1− x2)ξ

(
1

4

(∂x detλ)2

(detλ)2
+

Tr(λ−1∂xλ)2

4
+

1

2 detλ
λijΘi

xΘj
x

+
1

2 detλ

[
Υ2
x + detλλij∂xψ

i∂xψ
j
])

+
2C2ξ

1− x2
− 12Λ(1− x2)ξ

detλ

− C2∂x

(
(1− x2)∂x detλ

detλ
ξ + 2xξ

)
+ C2(1− x2)

ξ′2

2ξ
.

(4.27)

Since

(4.28) detλ = c±(1− x2) +O(1− x2)2 as x→ ±1

for some constants c±, it holds that

(4.29)

(
(1− x2)∂x detλ

detλ
ξ + 2xξ

) ∣∣∣∣∣
x=+1

x=−1

= 0.

Therefore in light of Lemma 4.1 the following area functional is nonpositive

(4.30) I =

∫ +1

−1
ξ

[
(1− x2)I − 1

1− x2

]
dx+

∫ 1

−1
(1− x2)

(
6Λξ

C2 detλ
− ξ′2

4ξ

)
dx ≤ 0,

where

(4.31) I =
1

8

(∂x detλ)2

(detλ)2
+

1

8
Tr(λ−1∂xλ)2 +

1

4 detλ
ΘT
xλ
−1Θx +

1

4 detλ
Υ2
x +

1

4
∂xψ

Tλ−1∂xψ

with ΘT
x = (Θ1

x,Θ
2
x) and ψT = (ψ1, ψ2).

5. Relation to Near-Horizon Geometries of Extreme Black Holes

In this section the relationship of the area functional I to a harmonic energy will be described. The
latter arises from the reduction of Einstein’s equations on U(1)2-invariant spacetimes. In particular,
the critical points of this functional give rise to near-horizon geometries. For simplicity, the discussion
here will be restricted to the case Λ = 0 and ξ = 1.

Observe that the functional may be reorganized as

(5.1) I =

∫ +1

−1

[
(1− x2)GAB

dXA

dx

dXB

dx
− 1

1− x2

]
dx ≤ 0,
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where I has been expressed as the pullback to the orbit space [−1, 1] of the nonpositively curved
metric on symmetric space G2(2)/SO(4) given by

(5.2) GABdX
AdXB =

(ddetλ)2

8(detλ)2
+

Tr(λ−1dλ)2

8
+
λijΘiΘj

4 detλ
+

Υ2

4 detλ
+
λijdψidψj

4
,

with target space coordinates X = (λij , ζ
i, χ, ψi); note that Υ and Θi are given in terms of these

coordinates by (3.5) and (3.9) respectively. Hence I is related in a rather simple way to the Dirichlet
energy of maps [−1, 1] → G2(2)/SO(4). Furthermore it turns out that the target metric (5.2) may
be given conveniently by

(5.3) GABdX
AdXB =

1

16
Tr(M−1dMM−1dM),

whereM is a positive definite, unimodular coset representative of G2(2)/SO(4) constructed from the

scalars XA whose specific form will not be required here (see, e.g. [29]).
In what follows it will be shown that I vanishes on harmonic maps, and that these harmonic maps

arise from near-horizon geometries. To begin, consider a 5-dimensional spacetime (M,g, F ) which
admits a U(1)2 isometry subgroup. The metric may be expressed in the general form

(5.4) g =
hµνdx

µdxν

detλ̃
+ λ̃ij(dφ̃

i + ωi)(dφ̃j + ωj)

where as before ∂φ̃i , i = 1, 2 generate the isometry group and xµ represent coordinates on a 3-

dimensional ‘base space’ M3 with Lorentzian metric h. The ωi = ωiµdx
µ are 1-forms on M3 which

measure the obstruction of the Killing fields to being hypersurface orthogonal, and λ̃ij are functions
on M3. Thus the spacetime can be viewed as a T 2 fibration over M3. In addition, the decomposition
of the Maxwell field into scalar potentials has been discussed in Section 4.

Now suppose that (M,g, F ) is a solution of the field equations of minimal supergravity (2.2). Upon
reduction it can be shown that the resulting equations describe the critical points of a 3-dimensional
theory of gravity coupled to a wave map (nonlinear sigma model) with action

(5.5) S[h,X] =

∫
M3

(
Rh − 2hµνGAB∂µX

A∂νX
B
)

Volh,

where Rh is the scalar curvature of h. The reduced field equations are then given by

Ric(h)µν =
1

8
Tr(M−1∂µMM−1∂νM),

∇µ(M−1∂µM) = 0.
(5.6)

As is well known, a similar reduction occurs for other gravity models reduced on tori, most notably
pure vacuum gravity and D = 4 Einstein-Maxwell theory.

Let us further assume that the spacetime contains a degenerate Killing horizon. This means that
there is an embedded null hypersurface N on which |V | = 0 and ∇V V = 0, for some Killing field
V . A cross-section of N is a spatial 3-dimensional manifold H, which will be taken to be closed.
The most important examples of such spacetimes are extreme stationary black holes with horizon
cross-sections H. In a neighborhood of N one may introduce Gaussian null coordinates, and take
the near-horizon limit [30] to find the near-horizon metric

(5.7) gNH = −2du(dr − r2α̃(y)du− rβ̃m(y)dym) + γ̃mn(y)dymdyn
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where α̃ and β̃ are a smooth function and a 1-form on the 3-dimensional closed manifold (H, γ̃).
Note that V = ∂u and that N is defined by r = 0. Thus the near-horizon geometry is characterized
completely by the triple (α̃, β̃m, γ̃mn), which are collectively referred to as the near-horizon data.

This near-horizon geometry inherits the U(1)2 isometries from its ‘parent’ spacetime. In fact it is
shown in [33] that there is an ‘enhancement of symmetry’ from R × U(1)2 to SO(2, 1) × U(1)2. It
follows that the near-horizon metric and Maxwell field take the form [29, 33]

gNH =Ξ(x)

[
−r

2du2

`2
− 2dudr

]
+ L2

[
dx2

det λ̃(x)
+ λ̃ij(x)

(
dφi +

birdu

L2

)(
dφj +

bjrdu

L2

)]
,

FNH =d

[
ardu

L
+ Lψ̃i(x)

(
dφi +

birdu

L2

)]
.

(5.8)

The constants ` and L are length scales introduced so that certain coordinates are dimensionless,
Ξ(x) > 0 and ψ̃i(x) are smooth functions on H, and a, bi are constants. Observe that the 2-
dimensional metric in the first square bracket is that of AdS2. Hence a near-horizon geometry can
be though of as (in general a twisted) H bundle over AdS2. Note that when bi 6= 0, the action of
SO(2, 1) will transform rdu by an exact function, which can be compensated by a corresponding
U(1) shift in the appropriate angular coordinate. It is easily seen that the near-horizon geometries
of extreme Reissner-Nordström (AdS2 × S2) and the extreme Kerr (a twisted fibration of S2 over
AdS2) both fall into the above general class.

The near-horizon data may be identified with harmonic map coordinates in the following way;
explicit details are given in [29]. Set φ̄i = Lφi and (x1, x2, x3) = (v, r, x) then

(5.9) hµνdx
µdxν = L2dx2 + Ξ det λ̃(x)

[
−r

2du2

`2
− 2dudr

]
, ωi =

birdu

L
, λ̃ij = L−2λij .

As for the potentials

(5.10) ψi = −Lψ̃i,

and

(5.11) ∂xχ =
L2(a + biψ̃i)

Ξ
− L2

√
3

(
ψ̃1∂xψ̃2 − ψ̃2∂xψ̃1

)
.

Furthermore a calculation shows that

(5.12) Θi =
L3bj λ̃ij

Ξ
dx,

which implies that the charged twist potentials are given by

(5.13) ∂xζ
i =

L3bj λ̃ij
Ξ

+ Lψ̃i

[
∂xχ+

L2

3
√

3

(
ψ̃1∂xψ̃2 − ψ̃2∂xψ̃1

)]
.

Note also that C = L−3.
In summary, given a near-horizon geometry we can read off the corresponding harmonic map data

(λij , ζ
i, χ, ψi), and the process can clearly be reversed to solve for (λ̃ij , ψ̃i,b

i,a). It is also evident
that the matrix M defined above is a function of x alone. Using this, the coupled 3D gravity-
harmonic map equations (5.6) may be simplified. The (uu) and (ur) components of the Einstein
equations yield

(5.14) ∂2
x(Ξ det λ̃) + 2

L2

`2
= 0
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so that

(5.15) Ξ det λ̃(x) =
L2

`2
(1− x2),

where we have used the fact that Ξ det λ̃ vanishes at x = ±1 (where λ̃ij has rank 1). Note that the
induced metric on a horizon-cross section H is then

(5.16)
`2Ξ(x)dx2

(1− x2)
+ λijdφ

idφj .

The harmonic map equations reduce to

(5.17) ∂x
[
(1− x2)M−1∂xM

]
= 0,

and coincide with the Euler-Lagrange equations for the functional I. Thus, the near-horizon geome-
tries are critical points of I. Furthermore, the (xx) component of the 3D Einstein equations (5.6)
place an algebraic constraint on M. Namely, direct integration produces

(5.18) (1− x2)M−1∂xM =M0

for some constant matrix M0. Since

(5.19) Ric(h)xx =
2

(1− x2)2
,

it follows that Tr(M2
0) = 16. The remaining components of the 3D Einstein equations are automat-

ically satisfied. This shows that determining a near-horizon geometry is equivalent to solving (5.17)
for the harmonic map scalars.

Finally, observe that for a near-horizon geometry the above calculations show that

(5.20) (1− x2)2Tr
[
M−1∂xMM−1∂xM

]
= 16.

Hence I = 0 when evaluated at near-horizon geometries.

6. Reparameterization of the Target and Area Lower Bound

Suppose that B is diffeomorphic to L(p, q) where p and q are mutually prime integers, and let
ai+η(i) and ai−η(i) be the linear combinations of the U(1)2 generators which vanish at x = 1 and
x = −1, respectively. This is equivalent to

(6.1) ai+λij = 0 at x = 1, ai−λij = 0 at x = −1,

and without loss of generality [21] these direction vectors may be chosen to be

(6.2) a+ =

(
1
0

)
, a− =

(
q
p

)
.

In order to rewrite the area functional I in a more convenient form, first transform the lens direction
vectors to that of the sphere. Namely set

(6.3) Z =

(
1 q
0 p

)
, Z−1 =

(
1 − q

p

0 1
p

)
,

(
φ1

φ2

)
= Z

(
φ̄1

φ̄2

)
,

(
φ̄1

φ̄2

)
= Z−1

(
φ1

φ2

)
,

so that

(6.4) λijdφ
idφj =

(
ZTλZ

)
ij︸ ︷︷ ︸

λ̄ij

dφ̄idφ̄j ,
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and

(6.5) āi+λ̄ij = 0 at x = 1, āi−λ̄ij = 0 at x = −1,

with

(6.6) ā+ =

(
1
0

)
, ā− =

(
0
1

)
.

Next select the following reparameterization of the λ target space variables

(6.7) λ̄11 = e2U+V (1− x) coshW, λ̄22 = e2U−V (1 + x) coshW, λ̄12 = e2U
√

1− x2 sinhW,

or rather

(6.8) λ11 = e2U+V (1− x) coshW, λ12 =
e2U

p

(√
1− x2 sinhW − qeV (1− x) coshW

)
,

(6.9) λ22 =
e2U

p2

(
q2eV (1− x) coshW − 2q

√
1− x2 sinhW + e−V (1 + x) coshW

)
,

with inverse transformation

U =
1

4
log

(
detλ

p2(1− x2)

)
,

V =
1

2

(
(1 + x)λ̄11

(1− x)λ̄22

)
=

1

2

(
p2(1 + x)λ11

(1− x) [q2λ11 − 2qλ12 + λ22]

)
,

W = sinh−1

(
λ̄12

e2U
√

1− x2

)
= sinh−1

(
λ12 − qλ11

pe2U
√

1− x2

)
.

(6.10)

Note that the regularity condition (4.3) becomes

(6.11) C2 = lim
x→±1

(1− x2)2

detλ · ai±a
j
±λij

= lim
x→±1

p2(1− x2)2

det λ̄ · āi±ā
j
±λ̄ij

,

and therefore

(6.12) lim
x→±1

e−6xU−V =
C2

2p2
.

Moreover using (4.2) produces

(6.13) ξ(V + 6xU)

∣∣∣∣∣
x=1

x=−1

= −(ξ(1) + ξ(−1)) log

(
C2

2p2

)
= −2αξ log

(
32π4

p2A2

)
,

where

(6.14) αξ =
ξ(1) + ξ(−1)

2
.
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Let us now compute each term in I. Observe that

(1− x2)

(
1

8

(∂x detλ)2

(detλ)2
+

Tr(λ−1∂xλ)2

8

)
− 1

1− x2

=(1− x2)

(
1

8

(∂x det λ̄)2

(det λ̄)2
+

Tr(λ̄−1∂xλ̄)2

8

)
− 1

1− x2

=
1− x2

4

{
12 (∂xU)2 + (∂xV )2 + (∂xW )2 + sinh2W (∂xV + ∂xh2)2

}
− 1

2
∂xV − 3x∂xU −

3

4
,

(6.15)

where

(6.16) h2 =
1

2
log

(
1− x
1 + x

)
.

Furthermore
1

4 detλ
ΘT
xλ
−1Θx +

1

4 detλ
Υ2
x +

1

4
∂xψ

Tλ−1∂xψ

=
1

4 detλ
ΘT
xZλ̄

−1ZTΘx +
1

4 detλ
Υ2
x +

1

4
∂xψ

TZλ̄−1ZT∂xψ

=p2 e
−6h1−6U−h2−V

coshW
(Θ̄1

x)2 + p2e−6h1−6U+h2+V coshW
(
e−h2−V tanhW Θ̄1

x − Θ̄2
x

)2

+ p2 e
−2h1−2U−h2−V

coshW
(∂xψ̄

1)2 + p2e−2h1−2U+h2+V coshW (e−h2−V tanhW∂xψ̄
1 − ∂xψ̄2)2

+ p2e−4h1−4UΥ2
x,

(6.17)

where

(6.18) Θ̄x = ZTΘx, ψ̄ = ZTψ, h1 =
1

4
log(1− x2).

Then setting x = cos θ, integrating by parts, and using the regularity condition (6.13) produces

(6.19) I = IL(p,q) + αξ log

(
32π4

p2A2

)
− β0

ξ ,

where

(6.20) β0
ξ =

∫ π

0

(
(∂θξ)

2

2ξ
+

3

4
ξ

)
sin θdθ

and

IL(p,q)(Ψ)

=
1

4

∫ π

0
ξ

{
12(∂θU)2 + (∂θV )2 + (∂θW )2 + sinh2W (∂θV + ∂θh2)2

+ p2 e
−6h1−6U−h2−V

coshW
(Θ̄1

θ)
2 + p2e−6h1−6U+h2+V coshW

(
e−h2−V tanhW Θ̄1

θ − Θ̄2
θ

)2

+ p2 e
−2h1−2U−h2−V

coshW
(∂θψ̄

1)2 + p2e−2h1−2U+h2+V coshW (e−h2−V tanhW∂θψ̄
1 − ∂θψ̄2)2

+ p2e−4h1−4UΥ2
θ + 3p2Λ

(
A

2
√

2π2

)2

e−4U − ξ−1 [2V ∂θξ + 12U∂θ (cos θξ)] ∂θh2

}
sin θdθ,

(6.21)
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with Ψ = (U, V,W, ζ1, ζ2, χ, ψ1, ψ2).
Consider now the case in which B is diffeomorphic to S1×S2, that is when the same Killing vector

η(2) vanishes at both x = ±1. Define the reparameterization

(6.22) λ11 = e2U+V̄ coshW, λ22 = e2U−V̄ (1− x2) coshW, λ12 = e2U
√

1− x2 sinhW,

where

(6.23) V̄ = V + 2h1 + h2.

In a similar fashion to the computations above

(1− x2)

(
1

8

(∂x detλ)2

(detλ)2
+

Tr(λ−1∂xλ)2

8

)
− 1

1− x2

=
1− x2

4

{
12 (∂xU)2 +

(
∂xV̄

)2
+ (∂xW )2 + sinh2W

(
∂xV̄ − 2∂xh1

)2}
+
x

2
∂x
(
V̄ − 6U

)
− 1,

(6.24)

and
1

4 detλ
ΘT
xλ
−1Θx +

1

4 detλ
Υ2
x +

1

4
∂xψ

Tλ−1∂xψ

=
e−4h1−6U−V̄

coshW
(Θ1

x)2 + e−8h1−6U+V̄ coshW
(
e2h1−V̄ tanhWΘ1

x −Θ2
x

)2

+
e−2U−V̄

coshW
(∂xψ

1)2 + e−4h1−2U+V̄ coshW (e2h1−V̄ tanhW∂xψ
1 − ∂xψ2)2 + e−4h1−4UΥ2

x.

(6.25)

Moreover in the current setting the lack of conical singularities yields

(6.26) lim
x→±1

e−6U+V̄ =
C2

2
,

so that

(6.27) xξ(V̄ − 6U)

∣∣∣∣∣
x=1

x=−1

= (ξ(1) + ξ(−1)) log

(
C2

2

)
= 2αξ log

(
C2

2

)
.

Therefore

(6.28) I = IS1×S2 + αξ log

(
32π4

A2

)
− β1

ξ ,

where

(6.29) β1
ξ =

∫ 1

−1

(
(1− x2)

(ξ′)2

2ξ
+ ξ

)
dx

and

IS1×S2 =
1

4

∫ π

0
ξ

{
12 (∂θU)2 +

(
∂θV̄

)2
+ (∂θW )2 + sinh2W

(
∂θV̄ − 2∂θh1

)2
+
e−4h1−6U−V̄

coshW
(Θ1

θ)
2 + e−8h1−6U+V̄ coshW

(
e2h1−V̄ tanhWΘ1

θ −Θ2
θ

)2

+
e−2U−V̄

coshW
(∂θψ

1)2 + e−4h1−2U+V̄ coshW (e2h1−V̄ tanhW∂θψ
1 − ∂θψ2)2

+ e−4h1−4UΥ2
θ + 3Λ

(
A

2
√

2π2

)2

e−4U − ξ−1
(
−2V̄ + 12U

)
∂θ(cos θξ)∂θh2

}
sin θdθ.

(6.30)
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It turns out that the two classes of functionals may be expressed in a unified fashion with the help
of a parameter s, which takes the value 0 for the lens family of topologies and the value 1 for the
topology S1 × S2. The relation between topology and the values of (p, q, s) is given by

(6.31)


B ∼= S3, s = 0, p = 1, q = 0,

B ∼= L(p, q), s = 0, 1 ≤ q ≤ p− 1,

B ∼= S1 × S2, s = 1, p = 1, q = 0.

Note that, in the ring case, the values of p and q do not coincide with those used earlier in the
section. The purpose for using these values here is to unify the expression for the functional below.
Let

(6.32) Vs = V + 2sh1 + sh2, βsξ =

∫ π

0

(
(∂θξ)

2

2ξ
+

3 + s

4
ξ

)
sin θdθ,

then

(6.33) I = IB + αξ log

(
32π4

p2A2

)
− βsξ ,

where

IB(Ψ)

=
1

4

∫ π

0
ξ

{
12 (∂θU)2 + (∂θVs)

2 + (∂θW )2 + sinh2W (∂θV + ∂θh2)2

+ p2 e
−6h1−h2−6U−V

coshW
(Θ̄1

θ)
2 + p2e−6h1+h2−6U+V coshW

(
e−h2−V tanhW Θ̄1

θ − Θ̄2
θ

)2

+ p2 e
−2h1−h2−2U−V

coshW
(∂θψ̄

1)2 + p2e−2h1+h2−2U+V coshW (e−h2−V tanhW∂θψ̄
1 − ∂θψ̄2)2

+ p2e−4h1−4UΥ2
θ + 3p2Λ

(
A

2
√

2π2

)2

e−4U

− ξ−1

[
2Vs∂θ

([
1− 2s cos2 θ

2

]
ξ

)
+ 12U∂θ (cos θξ)

]
∂θh2

}
sin θdθ.

(6.34)

Proposition 6.1. Let (M,g, F ) be a bi-axisymmetric solution of 5-dimensional minimal supergrav-
ity, and let B be a bi-axisymmetric stable MOTS, then

(6.35) A ≥ 4
√

3π2

p
e

IB(Ψ)−βsξ
2αξ .

Proof. According to (4.30) the area functional satisfies I ≤ 0. The desired result then follows from
(6.33). �

7. Convexity of the Area Functional and Minimization

Consider the 3-sphere S3 parameterized by Hopf coordinates (θ, φ1, φ2), where θ ∈ [0, π] and
φi ∈ [0, 2π], in which the round metric is expressed as

(7.1)
dθ2

4
+ sin2(θ/2)(dφ1)2 + cos2(θ/2)(dφ2)2,
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with volume form

(7.2) dV =
sin θ

4
dθ ∧ dφ1 ∧ dφ2.

Recall that the symmetric space G2(2)/SO(4) ∼= R8 comes equipped with a complete metric [2] of
nonpositive curvature given by

G =12du2 + cosh2wdv2 + dw2 + p2 e
−6u−v

coshw
(Θ̄1)2 + p2e−6u+v coshw(e−v tanhwΘ̄1 − Θ̄2)2

+ p2 e
−2u−v

coshw
(dψ̄1)2 + p2e−2u+v coshw(e−v tanhwdψ̄1 − dψ̄2)2 + p2e−4uΥ2.

(7.3)

Let Ω ⊂ S3, then the quasi-harmonic energy on this domain of maps Ψ̃ = (u, v, w, ζ1, ζ2, χ, ψ̄1, ψ̄2) :
S3 \ Γ→ G2(2)/SO(4), where Γ is the union of the two circles θ = 0, π, is defined by

EΩ(Ψ̃) =
1

π2

∫
Ω
ξ

{
12(∂θu)2 + cosh2w(∂θv)2 + (∂θw)2 + p2 e

−6u−v

coshw
(Θ̄1

θ)
2

+ p2e−6u+v coshw
(
e−v tanhwΘ̄1

θ − Θ̄2
θ

)2
+ p2 e

−2u−v

coshw
(∂θψ̄

1)2

+ p2e−2u+v coshw
(
e−v tanhw∂θψ̄

1 − ∂θψ̄2
)2

+ p2e−4uΥ2
θ

+ 3p2Λ

(
A

2
√

2π2

)2

e−4u sin2 θ

}
dV.

(7.4)

This differs from the pure harmonic energy by the factor ξ and the last term involving Λ. Next set
u = h1 + U and v = h2 + V , and observe that in Hopf coordinates

(7.5) h1 =
1

2
log sin θ, h2 = log tan

θ

2
.

With the help of the identity

(7.6) ∂θh1 =
cos θ

2
∂θh2,

it follows that

(7.7) 12ξ(∂θU)2 = 12ξ(∂θu)2 − 3ξ cos2 θ(∂θh2)2 − 12∂θ (ξU cos θ) ∂θh2 + 12U∂θ(ξ cos θ)∂θh2,
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and

ξ(∂θVs)
2 =ξ (∂θv + 2s∂θh1 + (s− 1)∂θh2)2

=ξ(∂θv)2 + ξ

2s∂θh1 + (s− 1)∂θh2︸ ︷︷ ︸
∂θhs


2

+ 2ξ∂θv (2s∂θh1 + (s− 1)∂θh2)

=ξ(∂θv)2 + ξ(∂θhs)
2 + 2ξ∂θ(Vs − hs)∂θhs

=ξ(∂θv)2 − ξ(∂θhs)2 + 2ξ∂θVs∂θhs

=ξ(∂θv)2 − ξ
(

2s cos2 θ

2
− 1

)2

(∂θh2)2 + 2ξ

(
2s cos2 θ

2
− 1

)
∂θVs∂θh2

=ξ(∂θv)2 − ξ
(

2s cos2 θ

2
− 1

)2

(∂θh2)2 + 2∂θ

(
ξ

(
2s cos2 θ

2
− 1

)
Vs

)
∂θh2

− 2Vs∂θ

(
ξ

(
2s cos2 θ

2
− 1

))
∂θh2.

(7.8)

Therefore, integration by parts and ∂θ (sin θ∂θh2) = 0 show that the area functional and quasi-
harmonic energy are related by

4IΩ(Ψ) =EΩ(Ψ̃)−
∫

Ω
ξ

((
2s cos2 θ

2
− 1

)2

+ 3 cos2 θ

)
(∂θh2)2dV

+

∫
∂Ω
ξ

(
2

(
2s cos2 θ

2
− 1

)
Vs − 12 cos θU

)
∂νh2dA

(7.9)

where ν is the unit outer normal and IΩ is the area functional (6.34) restricted to Ω.
Let Ψ0 = (U0, V0,W0, ζ

1
0 , ζ

2
0 , χ0, ψ

1
0, ψ

2
0) be a renormalized quasi-harmonic map arising from the

near-horizon geometry of the relevant model extreme black hole (mentioned in the statement of each
theorem in Section 2). In the appendix Ψ0 is given explicitly, and it can be shown that Ψ0 is a
critical point of IB. The goal of this section is to establish Ψ0 as the global minimum point for IB.

Theorem 7.1. Suppose that Ψ = (U, V,W, ζ1, ζ2, χ, ψ1, ψ2) is smooth and satisfies the asymptotics
(7.15)-(7.19) with χ|Γ = χ0|Γ, ζi|Γ = ζi0|Γ, and ψi|Γ = ψi0|Γ, i = 1, 2. Then there exists a constant
C > 0 such that

(7.10) IB(Ψ)− IB(Ψ0) ≥ C
∫
S3

(
distG2(2)/SO(4)(Ψ̃, Ψ̃0)−D

)2
dV,

where D denotes the average value of distG2(2)/SO(4)(Ψ̃, Ψ̃0).

The proof is based on a convexity argument. Namely, due to the fact that the target symmetric
space G2(2)/SO(4) is nonpositively curved, and Λ ≥ 0, the quasi-harmonic energy E is convex under
geodesic deformations. The functional IB then inherits such convexity as a result of (7.9), which
leads to the desired gap bound (7.10). However, since the energy of the maps in question is infinite,
a cut-and-paste argument away from the set Ωε = {(θ, φ1, φ2) | sin θ > ε} is needed to apply the
convexity property.

We first record all relevant asymptotic behavior. As θ → 0, π the renormalized quasi-harmonic
map satisfies

(7.11) U0, ζ
1
0 , ζ

2
0 , χ0 = O(1), W0 = O(sin θ), ∂θU0, ∂θχ0, ∂θψ

i
0 = O(sin θ), ∂θW0 = O(1),
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(7.12) V0 =

{
O(1) s = 0

−2 log
(
sin θ

2

)
+O(1) s = 1

, ∂θV0 =

{
O(sin θ) s = 0

− cot θ2 +O(sin θ) s = 1
,

(7.13) ψ1
0 =

{
O(sin2 θ

2) s = 0

O(1) s = 1
, ψ2

0 =

{
O(cos2 θ

2) s = 0

O(1) s = 1
, Θ2

0 = O(sin2 θ), s = 1,

(7.14) ∂θζ
1
0 =

{
sin2 θ

2O(sin θ) s = 0

O(sin θ) s = 1
, ∂θζ

2
0 =

{
cos2 θ

2O(sin θ) s = 0

O(sin θ) s = 1
.

Similarly the components of the given map Ψ should satisfy

(7.15) U, ζ1, ζ2, χ = O(1), W = O(sin θ), ∂θW = O(1),

(7.16) V =

{
O(1) s = 0

−2 log
(
sin θ

2

)
+O(1) s = 1

, ∂θV =

{
O(sin θ) s = 0

− cot θ2 +O(sin θ) s = 1
,

(7.17) ψ1 =

{
O(
√

sin θ
2) s = 0

O(1) s = 1
, ψ2 =

{
O(
√

cos θ2) s = 0

O(1) s = 1
, Θ2 = O(sin2 θ), s = 1,

(7.18) ∂θU, ∂θχ = O(sin θ), ∂θψ
i =

{
O(
√

sin θ) s = 0

O(sin θ) s = 1
,

(7.19) ∂θζ
1 =

{√
sin θ

2O(sin θ) s = 0

O(sin θ) s = 1
, ∂θζ

2 =

{√
cos θ2O(sin θ) s = 0

O(sin θ) s = 1
.

Next, in order to carry out the cut-and-paste procedure define a Lipschitz cut-off function

(7.20) ϕε =


0 if sin θ ≤ ε,
log(sin θ/ε)
log(
√
ε/ε)

if ε < sin θ <
√
ε,

1 if sin θ ≥
√
ε,

and let

(7.21) Ψε = (U, Vε,Wε, ζ
1
ε , ζ

2
ε , χε, ψ

1
ε , ψ

2
ε) = (U,Φε) = (U,Φ0 + ϕε (Φ− Φ0))

so that Ψε = (U, V0,W0, ζ
1
0 , ζ

2
0 , χ0, ψ

1
0, ψ

2
0) on S3 \ Ωε.

Lemma 7.2. limε→0 IB(Ψε) = IB(Ψ).

Proof. Observe that

(7.22) IB(Ψε) = IB(Ψε)|sin θ≤ε + IB(Ψε)|ε<sin θ<
√
ε + IB(Ψε)|sin θ≥√ε,
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and by dominated convergence theorem IB(Ψε)|sin θ≥√ε → IB(Ψ). Furthermore the first term on the
right-hand side converges to zero since

IB(Ψε)|sin θ≤ε =
1

4π2

∫
sin θ≤ε

ξ

{
12(∂θU)2︸ ︷︷ ︸
O(sin2 θ)

+ (∂θV0 + 2s∂θh1 + s∂θh2)2︸ ︷︷ ︸
O(sin2 θ)

+ (∂θW0)2︸ ︷︷ ︸
O(sin2 θ)

+ sinh2W0︸ ︷︷ ︸
O(sin2 θ)

(∂θV0 + ∂θh2)2︸ ︷︷ ︸
O(csc2 θ)

+p2 e−2U−V0︸ ︷︷ ︸O(1) s = 0

O(sin2 θ
2) s = 1

cot θ2
sin θ coshW0

|∂θψ̄1
0|2︸ ︷︷ ︸

O(sin2 θ)

+ p2 e−6U−V0︸ ︷︷ ︸O(1) s = 0

O(sin2 θ
2) s = 1

cot θ2
sin3 θ coshW0

(Θ̄1
0)2︸ ︷︷ ︸O(sin2 θ tan θ

2) s = 0

O(sin2 θ) s = 1

+ p2 e−6U+V0︸ ︷︷ ︸O(1) s = 0

O(csc2 θ
2) s = 1

tan θ
2 coshW0

sin3 θ

(
Θ̄2

0 − e−V0 cot
θ

2
tanhW0Θ̄1

0

)2

︸ ︷︷ ︸
O(sin2 θ)

}
dV

(7.23)

+
1

4π2

∫
sin θ≤ε

ξ

{
p2 e−2U+V0︸ ︷︷ ︸O(1) s = 0

O(sin−2 θ
2) s = 1

tan θ
2 coshW0

sin θ

(
∂θψ̄

2
0 − e−V0 cot

θ

2
tanhW0∂θψ̄

1
0

)2

︸ ︷︷ ︸
O(sin2 θ)

+
p2

sin2 θ
e−4U︸ ︷︷ ︸
O(1)

|Υ0|2︸ ︷︷ ︸
O(sin2 θ)

+3p2Λ

(
A

2
√

2π2

)2

e−4U︸ ︷︷ ︸
O(1)

}
dV

− 1

4π2

∫
sin θ≤ε

{
12

sin θ
U∂θ (cos θξ)︸ ︷︷ ︸

O(1)

+
2

sin θ
(V0 + 2sh1 + sh2) ∂θ

([
1− 2s cos2 θ

2

]
ξ

)
︸ ︷︷ ︸

O(1)

}
dV.

Now consider the region Wε = {θ ∈ [0, π] | ε < sin θ <
√
ε}. Let Ii, i = 1, . . . , 12 denote integrals

over Wε of the terms in (7.23) with Φ0 replaced by Φε. Then each such integral vanishes in the limit
as ε→ 0. To see this observe that

(7.24) I1 ≤ c
∫
Wε

(∂θU)2︸ ︷︷ ︸
O(sin2 θ)

dV = O (ε) ,

I2 ≤c
∫
Wε

(∂θV0 + 2s∂θh1 + s∂θh2)2︸ ︷︷ ︸
O(sin2 θ)

+ (∂θV0 − ∂θV )2︸ ︷︷ ︸
O(sin2 θ)

+ (V − V0)2︸ ︷︷ ︸
O(1)

(∂θϕε)
2︸ ︷︷ ︸

O(cot2 θ(log ε)−2)

 dV

=O

(
1

| log ε|

)
,

(7.25)
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(7.26) I3 ≤ c
∫
Wε

(∂θW )2︸ ︷︷ ︸
O(1)

+ (∂θW0)2︸ ︷︷ ︸
O(1)

+ (W −W0)2︸ ︷︷ ︸
O(1)

(∂θϕε)
2︸ ︷︷ ︸

O(cot2 θ(log ε)−2)

 dV = O

(
1

| log ε|

)
.

Moreover, using sinhWε = O(sin θ) yields

I4 ≤c
∫
Wε

sin2 θ

(∂θV − ∂θV0)2︸ ︷︷ ︸
O(sin2 θ)

+ (∂θh2)2︸ ︷︷ ︸
O(csc2 θ)

+ (V − V0)2︸ ︷︷ ︸
O(1)

(∂θϕε)
2︸ ︷︷ ︸

O(cot2 θ(log ε)−2)

 dV

=O(ε).

(7.27)

Next observe that since the values of the potentials of the two maps agree at the poles, it holds that

(7.28) |ζi − ζi0|+ |χ− χ0|+ |ψ̄i − ψ̄i0| = O(sin2 θ).

From this we find

(7.29) |∂θψiε| ≤ |∂θψi|︸ ︷︷ ︸O(
√

sin θ) s = 0

O(sin θ) s = 1

+ |∂θψi0|︸ ︷︷ ︸
O(sin θ)

+ |ψi − ψi0||∂θϕε|︸ ︷︷ ︸
| log ε|−1O(sin θ)

=

{
O(
√

sin θ) s = 0

O(sin θ) s = 1
,

and similar considerations produce

(7.30) |Υε| ≤

{
| log ε|−1O(

√
sin θ) s = 0

O(sin θ) s = 1
, |Θ̄i

ε| ≤

{
O(
√

sin θ
2sin θ) s = 0

| log ε|1−iO(sin θ) s = 1
.

It follows that

(7.31) I5 ≤ c
∫
Wε

cot θ2
sin θ

e−Vε−2U

coshWε︸ ︷︷ ︸O(1) s = 0

O(sin2 θ
2) s = 1

(∂θψ̄
1
ε)

2︸ ︷︷ ︸O(sin θ) s = 0

O(sin2 θ) s = 1

dV,

(7.32) I6 ≤ c
∫
Wε

cot θ2
sin3 θ

e−Vε−6U

coshWε︸ ︷︷ ︸O(1) s = 0

O(sin2 θ
2) s = 1

(Θ̄1
ε)

2︸ ︷︷ ︸O(sin θ
2 sin2 θ) s = 0

O(sin2 θ) s = 1

dV,

(7.33) I7 ≤ c
∫
Wε

tan θ
2

sin3 θ
e−Vε−6U coshWε︸ ︷︷ ︸O(1) s = 0

O(csc2 θ
2) s = 1

(Θ̄2
ε − e−Vε cot

θ

2
tanhWεΘ̄

1
ε)

2︸ ︷︷ ︸O(sin θ
2 sin2 θ) s = 0

| log ε|−2O(sin2 θ) s = 1

dV,
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(7.34) I9 ≤ c
∫
Wε

(sin θ)−2 e−4U︸ ︷︷ ︸
O(1)

|Υε|2︸ ︷︷ ︸| log ε|−2O(sin θ), s = 0

O(sin2 θ), s = 1

dV.

Analogous estimates hold for the remaining integrals I8, I10, I11, and I12. �

A basic property of the harmonic energy, for maps into nonpositively curved target spaces, is
convexity along geodesic deformations. When the cosmological constant is nonnegative this property
carries over to the quasi-harmonic energy (7.4).

Proposition 7.3. Let Ω ⊂ S3 be a domain which does not contain either of the poles θ = 0, π, and
let Ψ̃t : Ω→ G2(2)/SO(4) be a family of smooth maps which are geodesics in t ∈ [0, 1]. Then

(7.35)
d2

dt2
EΩ(Ψ̃t) ≥ 1

2π2

∫
Ω
|∇distG2(2)/SO(4)(Ψ̃

1, Ψ̃0)|2dV.

Proof. The quasi-harmonic energy of the map Ψ̃t = (ut, vt, wt, ζ
1
t , ζ

2
t , χt, ψ

1
t , ψ

2
t ) is the sum of the

pure harmonic energy scaled by ξ and a term involving the cosmological constant, namely

(7.36) EΩ(Ψ̃t) =
1

4π2

∫
Ω
ξ|dΨ̃t|2dV + 3p2Λ

(
A

2
√

2π3

)2 ∫
Ω
ξe−4ut sin2 θdV

where the energy density is

(7.37) |dΨ̃t|2 = 4GBC∂θ(Ψ̃
t)B∂θ(Ψ̃

t)C .

Since G2(2)/SO(4) is nonpositively curved the pure harmonic energy is convex along geodesics [37],
and the same is true for the scaling by ξ. In particular, using that ξ ≥ 1 it holds that

(7.38)
d2

dt2

∫
Ω
ξ|dΨ̃t|2dV ≥ 2

∫
Ω
|∇distG2(2)/SO(4)(Ψ̃

1, Ψ̃0)|2dV.

Thus, it remains to show that

(7.39) ∂2
t e
−4ut = 4(−üt + 4u̇2

t )e
−4ut = 4

[
ΓuBC∂t(Ψ̃

t)B∂t(Ψ̃
t)C + 4u̇2

t

]
e−4ut ≥ 0,

where u̇t = ∂tut and the geodesic equation

(7.40) üt + ΓuBC∂t(Ψ̃
t)B∂t(Ψ̃

t)C = 0

was used.
The Christoffel symbols may be computed as follows

(7.41) Γuuu = Γuuv = Γuvv = Γuuw = Γuuζi = Γuuψi = Γuuχ = 0,

(7.42) Γuvw = Γuvζi = Γuvψi = Γuvχ = Γuww = Γuwζi = Γuwψi = Γuwχ = 0,

(7.43) Γuζiζj =
1

4
Gζiζj , Γuζiψ̄j =

1

4
Gζiψ̄j , Γuζiχ =

1

4
Gζiχ, Γuχχ =

1

4
Gχχ −

p2

12
e−4u,

(7.44) Γuψ̄1ψ̄1 =
1

4
Gψ̄1ψ̄1 −

p2

6 coshw
e−2u−v − p2

6
e−2u−v sinhw tanhw − p2

18
e−4u(ψ̄2)2,

(7.45) Γuψ̄1ψ̄2 =
1

4
Gψ̄1ψ̄2 +

p2

3
e−2u sinhw +

p2

18
e−4uψ̄1ψ̄2, Γuψ̄1χ =

1

4
Gψ̄1χ +

p2

6
√

3
e−4uψ̄2,
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(7.46) Γuψ2χ =
1

4
Gψ̄2χ −

p2

6
√

3
e−4uψ̄1, Γuψ̄2ψ̄2 =

1

4
Gψ̄2ψ̄2 −

p2

36
e−4u(ψ̄1)2 − p2

6
e−2u+v coshw.

Let

(7.47) ˙̄Θi
t = ζ̇it + ψit

(
χ̇t +

1

3
√

3
(ψ̄1

t
˙̄ψ2
t − ψ̄2

t
˙̄ψ1)

)
, Υ̇t = χ̇t +

1√
3

(ψ̄1
t

˙̄ψ2
t − ψ̄2

t
˙̄ψ1
t ),

and observe that

|∂tΨ̃t|2G =12u̇2
t + cosh2wtv̇

2
t + ẇ2

t +
p2e−6ut−vt

coshwt
( ˙̄Θ1

t )
2

+ p2e−6ut+vt coshwt(e
−vt tanhwt

˙̄Θ1
t − ˙̄Θ2

t )
2 +

p2e−2ut−vt

coshwt
( ˙̄ψ1

t )
2

+ p2e−2ut+vt coshwt(e
−vt tanhwt

˙̄ψ1
t − ˙̄ψ2

t )
2 + p2e−4utΥ̇2

t .

(7.48)

Therefore

ΓuBC∂t(Ψ̃
t)B∂t(Ψ̃

t)C =
p2e−6ut−vt

4 coshwt
( ˙̄Θ1

t )
2 +

p2

4
e−6ut+vt coshwt(e

−vt tanhwt
˙̄Θ1
t − ˙̄Θ2

t )
2

+
p2e−2ut−vt

12 coshwt
( ˙̄ψ1

t )
2 +

p2

12
e−2ut+vt coshwt(e

−vt tanhwt
˙̄ψ1
t − ˙̄ψ2

t )
2

+
p2

6
e−4utΥ̇2

t ,

(7.49)

confirming that (7.39) is nonegative. �

It is now possible to prove the main result of this section.

Proof of Theorem 7.1. Let Ψ̃t
ε, t ∈ [0, 1] be the minimizing geodesic in G2(2)/SO(4) connecting Ψ̃0

to Ψ̃ε. Then U tε = U0 + t(U − U0) and V t
ε = V0 on S3 \ Ωε. Observe that

(7.50)
d2

dt2
IB(Ψt

ε) =
d2

dt2
IΩε(Ψ

t
ε)︸ ︷︷ ︸

I1

+
d2

dt2
IS3\Ωε(Ψ

t
ε)︸ ︷︷ ︸

I2

.

According to Proposition 7.3 and (7.9) we have

I1 =
d2

dt2
1

4
EΩε(Ψ̃

t
ε)−

d2

dt2
1

4

∫
Ωε

ξ

((
2s cos2 θ

2
− 1

)2

+ 3 cos2 θ

)
(∂θh2)2dV

+
d2

dt2
1

4

∫
∂Ωε

ξ

(
2

(
2s cos2 θ

2
− 1

)
(Vs)0 − 12 cos θ (U0 + t(U − U0))

)
∂νh2dA

≥ 1

8π2

∫
Ωε

|∇distG2(2)/SO(4)(Ψ̃ε, Ψ̃0)|2dV.

(7.51)
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Furthermore, using that distG2(2)/SO(4)(Ψ̃ε, Ψ̃0) =
√

12|u− u0| on S3 \ Ωε yields

I2 =
1

4π2

∫
S3\Ωε

p2ξ

{
24

p2
(∂θU − ∂θU0)2 + 36(U − U0)2 e

−6h1−h2−6Ut−V0

coshW0
(Θ̄1

0)2

+ 36(U − U0)2e−6h1+h2−6Ut+V0 coshW0(e−h2−V0 tanhW0Θ̄1
0 − Θ̄2

0)2

+ 4(U − U0)2 e
−2h1−h2−2Ut−V0

coshW0
(∂θψ̄

1
0)2

+ 4(U − U0)2e−2h1+h2−2Ut+V0 coshW0(e−h2−V0 tanhW0∂θψ̄
1
0 − ∂θψ̄2

0)2

+ 16(U − U0)2e−4h1−4Ut(Υ0)2 + 48Λ

(
A

2
√

2π2

)2

(U − U0)2e−4Ut

}
dV

≥ 1

2π2

∫
S3\Ωε

|∇distG2(2)/SO(4)(Ψ̃ε, Ψ̃0)|2dV.

(7.52)

Note that passing d2

dt2
inside the integral is justified here since all terms on the right-hand side of

(7.52) are uniformly integrable.
Next using the fact that Ψ0 is a critical point of the functional IB, as well as the fact that in a

neighborhood of the poles

(7.53)
d

dt
V t
ε =

d

dt
W t
ε =

d

dt
ζi,tε =

d

dt
χtε =

d

dt
ψi,tε = 0, i = 1, 2,

shows

(7.54)
d

dt
IB(Ψt

ε)

∣∣∣∣
t=0

= 6ξ(U − U0)∂θU0 sin θ

∣∣∣∣π
0

= 0.

Now combine (7.50)-(7.52) and (7.54) to find

IB(Ψε)− IB(Ψ0) ≥ 1

8π2

∫
S3

|∇ distG2(2)/SO(4)(Ψ̃ε, Ψ̃0)|2dV

≥C
∫
S3

(
distG2(2)/SO(4)(Ψ̃ε, Ψ̃0)−Dε

)2
dV,

(7.55)

where the second line arises from the Poincaré inequality and Dε is the average value of the distance
between Ψ̃ε and Ψ̃0. By Lemma 7.2 limε→0 IB(Ψε) = IB(Ψ), so the proof will be complete if it can
be shown that this limit may be passed inside the integral. To accomplish this, observe that by the
triangle inequality it is enough to verify

(7.56) lim
ε→0

∫
S3

dist2
G2(2)/SO(4)(Ψ̃ε, Ψ̃)dV = 0.
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The triangle inequality implies

distG2(2)/SO(4)(Ψ̃ε, Ψ̃)

≤distG2(2)/SO(4)((u, vε, wε, ζ
1
ε , ζ

2
ε , χε, ψ

1
ε , ψ

2
ε), (u, v, wε, ζ

1
ε , ζ

2
ε , χε, ψ

1
ε , ψ

2
ε))

+ distG2(2)/SO(4)((u, v, wε, ζ
1
ε , ζ

2
ε , χε, ψ

1
ε , ψ

2
ε), (u, v, w, ζ

1
ε , ζ

2
ε , χε, ψ

1
ε , ψ

2
ε))

+ · · ·+ distG2(2)/SO(4)((u, v, w, ζ
1, ζ2, χ, ψ1, ψ2

ε), (u, v, w, ζ
1, ζ2, χ, ψ1, ψ2))

≤C

{
|v − vε|+ |w − wε|+ e−3u

(
e−

1
2v|ζ1 − ζ1

ε |+ e
1
2v|ζ2 − ζ2

ε |
)

+ e−3u

(
e−

1
2v(|ψ1|+ |ψ1

0|) + e
1
2v(|ψ2|+ |ψ2

0|)
)
|χ− χε|

+ e−3u

(
(|ψ1|+ |ψ1

0|)(|ψ2|+ |ψ2
0|)e

−1
2v + (|ψ2|+ |ψ2

0|)2e
1
2v

)
|ψ1 − ψ1

ε |

+ e−3u

(
(|ψ1|+ |ψ1

0|)2e−
1
2v + (|ψ1|+ |ψ1

0|)(|ψ2|+ |ψ2
0|)e

1
2v

)
|ψ2 − ψ2

ε |

+ e−2u
(
|χ− χε|+ (|ψ2|+ |ψ2

0|)|ψ1 − ψ1
ε |+ (|ψ1|+ |ψ1

0|)|ψ2 − ψ2
ε |
)

+ e−u
(
e−

1
2v|ψ1 − ψ1

ε |+ e
1
2v|ψ2 − ψ2

ε |
)}

,

(7.57)

where it was used that distances between points of G2(2)/SO(4) are dominated by the length of con-
necting coordinate lines. Since all terms on the right-hand side are uniformly bounded independent
of ε, (7.56) follows from the dominated convergence theorem. �

8. Proof of the Main Results

Proof of Theorems 2.1, 2.2, 2.3. From the spacetime (M,g, F ) and stable MOTS we obtain the
map Ψ as explained in Sections 5 and 6. Since Λ = 0 it holds that αξ = 1, so that by Proposition
6.1

(8.1) A ≥ 4
√

3π2

p
e
IB(Ψ)−βs1

2 .

Let Ψ0 be the renormalized harmonic map arising from the near horizon geometry of the relevant
model extreme black hole (mentioned in the statement of each theorem) having angular momentum
and charges that agree with those of the given MOTS. Then according Theorem 7.1

(8.2)
4
√

3π2

p
e
IB(Ψ)−βs1

2 ≥ 4
√

3π2

p
e
IB(Ψ0)−βs1

2 = A0,

where A0 is the area of the horizon for the relevant model extreme black hole. Note that the equality
in (8.2) follows from the fact that the function M vanishes at Ψ0, as is shown in Section 5. In the
appendices the value of A0 is computed in terms of angular momentum and charges. This, together
with (8.1) and (8.2) yields the desired area-angular momentum-charge inequality for each theorem.
In the case this inequality is saturated, we must have IB(Ψ) = IB(Ψ0) which implies by the gap

bound that distG2(2)/SO(4)(Ψ̃, Ψ̃0) is constant. Since Ψ realizes the infimum of the functional IB, it is

a critical point and hence a harmonic map. According to [1] the two maps Ψ and Ψ0 must then be
related by an isometry in the target symmetric space. The Maxwell field F may then be reconstructed
from Ψ via (4.15), and thus (B, γ, F ) must arise from the relevant near horizon geometry. �
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Before proceeding to the proof of Theorem 2.4 we need a preliminary result.

Lemma 8.1. (a) Given (A,J1,J2) ∈ R2
+ × R− with J = J1 = ±J2, there exists a unique

(Â, Ĵ1, Ĵ2) ∈ R2
+ × R− with Ĵ = Ĵ1 = ±Ĵ2 which saturates

(8.3)
Λ3A6

210π6J 2
≤

(
A
√
A2 + 512π2J 2 −A2 − 128π2J 2

)3

(
A−
√
A2 + 512π2J 2

)4 ,

and satisfies

(8.4) Ĵ =
J
A2
Â2, Â ≤ π2

√
2Λ3

.

Moreover, the inequality (8.3) is equivalent to Â ≥ A.

(b) Given (A,Q) ∈ R2
+, there exists a unique (Â, Q̂) ∈ R2

+ which saturates

(8.5) Q2 ≤ 12

64π2

(
Aπ

2

)4/3

− 3ΛA2

32π2
,

and satisfies

(8.6) Q̂ =
Q

A
Â, Â ≤ π2

√
2Λ3

.

Moreover, the inequality (8.5) is equivalent to Â ≥ A.

Proof. Consider part (a) when J1 = −J2; similar arguments hold when J1 = J2. We may assume
without loss of generality that J1 > 0. Define the curve

(8.7) f(τ) = (A(τ),J1(τ),J2(τ)) =

(
τ,
J1

A2
τ2,
J2

A2
τ2

)
=

(
τ,
J
A2
τ2,− J

A2
τ2

)
in R2

+ × R−. Then for small τ each side of the inequality satisfies

(8.8)
Λ3A6(τ)

210π6J 2(τ)
∼ τ2,

(
A(τ)

√
A2(τ) + 512π2J 2(τ)−A2(τ)− 128π2J 2(τ)

)3

(
A(τ)−

√
A2(τ) + 512π2J 2(τ)

)4 ∼ 1,

so that the inequality holds on the curve f . For large τ it is clear that the inequality is reversed. It
follows that there exists a time τ = Â for which the inequality is saturated. Further analysis of the

roots of the associated polynomial show that this time is unique for τ ≤ π2
√

2Λ3
.

In order to establish the last statement in part (a), we interpret R2
+ as having a vertical J -axis

and horizontal A-axis. Observe that inequality (8.3) corresponds to all points lying below the surface
defined by equality in (8.3); this is similar to Figure 1 in Appendix A. According to the description

of Â above, it follows that A ≤ Â if and only if the inequality (8.3) is satisfied.
Similar arguments may be used to establish part (b) with the curve

(8.9) f(τ) = (A(τ), Q(τ)) =

(
τ,
Q

A
τ

)
in R2

+. �
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Proof of Theorem 2.4. We will provide details only for part (a), as similar arguments may be used
for part (b). Let Ψ be the map obtained from the spacetime (M,g, F ) as explained in Sections 5
and 6, and let (A,J1,J2) be the area and angular momenta of the stable MOTS. Lemma 8.1 states

that there exist corresponding values (Â, Ĵ1, Ĵ2) which arise from an extreme CCLP black hole, and

are such that the desired inequality (2.14) is equivalent to showing Â ≥ A. Let â and b̂ be the
angular momentum parameters for this extreme CCLP solution (these quantities are given implicitly

in terms of Ĵ1 and Ĵ2 by the equations (A.17)), and set

Ψ̂ =(Û , V̂ , Ŵ , ζ̂1, ζ̂2, χ̂, ψ̂1, ψ̂2)

=

U +
1

2
log

Â

A
, V,W,

(
Â

A

)3/2

ζ1,

(
Â

A

)3/2

ζ2,
Â

A
χ,

(
Â

A

)1/2

ψ1,

(
Â

A

)1/2

ψ2

 .
(8.10)

According to Theorem 7.1

(8.11) ÎS3(Ψ̂) ≥ ÎS3(Ψ̂0),

where Ψ̂0 denotes the extreme CCLP map with the same angular momenta Ĵ1, Ĵ2, and ÎS3 represents

the functional IS3 defined with respect to the quantities â, b̂, and Â. Next observe that

(8.12) ÎS3(Ψ) = ÎS3(Ψ̂)− 3αξ̂ log
Â

A
,

and therefore with the help of Proposition 6.1

(8.13) A ≥ 4
√

3π2e

Î
S3 (Ψ)−β̂0

ξ̂
2α
ξ̂ =

4
√

3π2A3/2

Â3/2
e

Î
S3 (Ψ̂)−β̂0

ξ̂
2α
ξ̂ .

By combining (8.11) and (8.13) we obtain at Â ≥ A, since

(8.14) 4
√

3π2e

I
S3 (Ψ̂0)−β̂0

ξ̂
2α
ξ̂ = Â.

Consider now the case of equality in (2.14). By the proof of Lemma 8.1 this implies that

(Â, Ĵ1, Ĵ2) = (A,J1,J2), and hence Ψ̂ = Ψ, Ψ̂0 = Ψ0. Furthermore IS3(Ψ) = IS3(Ψ0), which
as in the above proof of Theorems 2.1, 2.2, and 2.3 yields Ψ = Ψ0 up to isometry in the target
symmetric space. From here the same arguments apply to show that (B, γ, F ) must arise from the
near-horizon geometry of the extreme CCLP black hole. �

Appendix A. The CCLP Charged Rotating de Sitter Black Hole

A.1. The Solution. Consider 5-dimensional minimal supergravity with a positive cosmological con-
stant with action (2.1). The Chong-Cvetic-Lu-Pope (CCLP) solution [5] may be interpreted as the
natural generalization of the Kerr-Newman de Sitter black hole to 5 dimensions. In Boyer-Lindquist
coordinates the solution takes the form

g =−
ξ
[(

1− Λr2
)

Σdt+ 2qν
]
dt

ΞaΞbΣ
+

2qνω

Σ
+

f

Σ2

(
ξdt

ΞaΞb
− ω

)2

+
Σdr2

∆
+

Σdθ̃2

ξ
+
r2 + a2

Ξa
sin2 θ̃(dφ1)2 +

r2 + b2

Ξb
cos2 θ̃(dφ2)2

(A.1)
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where

(A.2) ν = b sin2 θ̃dφ1 + a cos2 θ̃dφ2, ω = a sin2 θ̃
dφ1

Ξa
+ b cos2 θ̃

dφ2

Ξb
,

(A.3) ξ = 1 + Λ(a2 cos2 θ̃ + b2 sin2 θ̃), ∆ =
(r2 + a2)(r2 + b2)(1− Λr2) + q2 + 2abq

r2
− 2m,

(A.4) Σ = r2+b2 sin2 θ̃+a2 cos2 θ̃, Ξa = 1+a2Λ, Ξb = 1+b2Λ, f = (2m−2abqΛ)Σ−q2.

The Maxwell field F = dA has the potential

(A.5) A =

√
3q

Σ

(
ξdt

ΞaΞb
− ω

)
.

The above solution is characterized by the parameters (m, a, b, q) and for a suitable range of param-
eters they describe regular black holes on and outside an event horizon up to a cosmological horizon
whose scale is set by the length scale `2 = Λ−1. If Λ = 0 the solution is considerably simpler as we
discuss below. Here t ∈ R, θ̃ ∈ (0, π/2), and φi ∼ φi + 2π. Apart from coordinate singularities at

θ̃ = 0, π/2 where the rotational Killing fields ∂/∂φi degenerate, there are singularities at the roots
of ∆(r). These correspond to an inner horizon, an outer horizon, and a cosmological horizon for
suitable choice of parameters. In particular for the subfamily of extreme black holes we require the
cubic function ∆(R) with R ≡ r2 to have three real positive roots, two of which coincide. This
condition is equivalent to requiring the discriminant of the cubic ∆(R) vanishes, which reduces to
an equation of the form f(a, b, q,m) = 0 for a smooth function f . The implicit function theorem will
guarantee that, generically in some open set in parameter space, a solution m = m(a, b, q) exists.

If we set R+ to be a root we can eliminate m by

(A.6) m =
(R+ + a2)(R+ + b2)(1−R+Λ) + q2 + 2abq

2R+
,

and R+ is a double root provided

(A.7) ΛR2
+(2R+ + a2 + b2) = R2

+ − (ab+ q)2,

which implies R+ ≥ |ab + q| with equality if and only if Λ = 0. We will take q ≥ 0 (below we will
see this is equivalent to choosing electric charge Q ≥ 0) and assume ab + q > 0. Finally we require
that the cosmological horizon Rc ≥ R+, that is

(A.8) (a2 + b2)(ab+ q)2 + 3(ab+ q)2R+ −R3
+ ≥ 0.

In summary, the extreme family is parameterized by (R+, a, b, q) which satisfy the extremality con-
straint (A.7).

Defining r+ =
√
R+, we can derive the quasi-harmonic map data corresponding to the near-horizon

geometry associated to the extreme subfamily of black holes. The horizon metric is

(A.9) γmndy
mdyn =

Σr+

ξ
dθ̃2 + λijdφ

idφj ,

where Σr+ = r2
+ + b2 sin2 θ̃ + a2 cos2 θ̃ and

(A.10) λ11 =
(r2

+ + a2) sin2 θ̃

Ξa
+
a
[
a
(
2mΣr+ − q2

)
+ 2bqΣr+

]
sin4 θ̃

Σ2
r+Ξ2

a

,
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(A.11) λ22 =
(r2

+ + b2) cos2 θ̃

Ξb
+
b
[
b
(
2mΣr+ − q2

)
+ 2aqΣr+

]
cos4 θ̃

Σ2
r+Ξ2

b

,

(A.12) λ12 =

[
ab
(
2mΣr+ − q2

)
+ (a2 + b2)qΣr+

]
sin2 θ̃ cos2 θ̃

Σ2
r+ΞbΞa

,

and the horizon area is A = 8π2C−1 where

(A.13) C−1 =
r4

+ + r2
+(a2 + b2) + ab(ab+ q)

4r+ΞaΞb
.

It is straightforward to read off the magnetic potentials

(A.14) ψ1
0 =

√
3aq sin2 θ̃

ΞaΣr+

, ψ2
0 =

√
3bq cos2 θ̃

ΞbΣr+

.

A somewhat longer calculation gives Υ, and hence the potential

(A.15) χ0 = −
√

3q(b2 + r2
+)(a2 + r2

+)

ΞaΞb(a2 − b2)Σr+

.

The computation of the charged twist potentials ζi0 is involved and yields cumbersome expressions
which we will omit here, although we will record the asymptotic behavior relevant for the convexity
argument below. Using the quasi-harmonic map potentials one can calculate the electric charge

(A.16) Q =

√
3πq

4ΞaΞb
,

and angular momenta associated to the black hole horizon

(A.17) J1 =
π [2am + qb (2− Ξa)]

4Ξ2
aΞb

, J2 =
π [2bm + qa (2− Ξb)]

4ΞaΞ2
b

.

The estimates of the quasi-harmonic map as θ̃ → 0, π/2 will now be collected. Recall that in terms
of our parametrization for spherical topology, we have

(A.18) U0 =
1

4
log

(
ξ(r4

+ + (a2 + b2)r2
+ + a2b2 + abq)2

4Σr+r
2
+Ξ2

aΞ
2
b

)
, V0 =

1

2
log

(
λ11 cos2 θ̃

2

λ22 sin2 θ̃
2

)
.

The required asymptotic behavior of the scalars is

(A.19) V0 =
1

2
log

(
4π2(a2 + r2

+)3

A2Ξ3
a

)
+O(sin2 2θ̃), ∂θ̃V0 = O(sin 2θ̃),

(A.20) U0 =
1

4
log

(
ΞaA

2

16π4(a2 + r2
+)

)
+O(sin2 2θ̃), ∂θ̃U0 = O(sin 2θ̃),

(A.21) W0 = O(sin 2θ̃), ∂θ̃W0 = O(1),

(A.22) ψ1
0 = O(sin2 θ̃), ∂θ̃ψ

1
0 = O(sin θ̃), ψ2

0 = O(cos2 θ̃), ∂θ̃ψ
2
0 = O(sin θ̃),

(A.23) ζ1
0 = −2J1

π
+O(sin4 θ̃) as θ̃ → 0, ζ1

0 =
2J1

π
+O(cos2 θ̃) as θ̃ → π/2,

(A.24) ζ2
0 = −2J2

π
+O(sin2 θ̃) as θ̃ → 0, ζ2

0 =
2J2

π
+O(cos4 θ̃) as θ̃ → π/2,
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(A.25) χ0 =
2Q

π
+O(sin2 θ̃) as θ̃ → 0, χ0 = −2Q

π
+O(cos2 θ̃) as θ̃ → π/2,

(A.26) ∂θ̃χ0 = O(sin 2θ̃), ∂θ̃ζ
1
0 = sin 2θ̃O(sin2 θ̃), ∂θ̃ζ

2
0 = sin 2θ̃O(cos2 θ̃).

A.2. Geometric Equalities Satisfied by the CCLP Black Hole Horizon. In this section we
consider some special subfamilies of the three-parameter family of extreme horizons.

A.2.1. Vanishing Cosmological Constant Λ = 0. In this case the geometry simplifies significantly as
we can express R+ explicitly in terms of the parameters as r2

+ = R+ = ab+ q > 0, or equivalently

(A.27) m = q +
(a+ b)2

2
.

The extreme horizon area satisfies

(A.28) Ae = 8

√
π2J1J2 +

4π

3
√

3
Q3,

and positivity is guaranteed by ab + q > 0. Note that if set Q = 0, we recover the vacuum result
obtained by Hollands [21]. Moreover, if either Ji is set to zero, then we obtain

(A.29) Ae = 8

√
4π

3
√

3
Q3.

This holds in particular for an extreme Reissner-Nordström horizon.

A.2.2. Vanishing Angular Momenta Ji = 0. It is sufficient (although not necessary) to set a = b = 0.
In this case the extremality condition (A.7) reads

(A.30) 2ΛR3
+ = R2

+ − q2,

and the mass parameter is fixed by

(A.31) m =
R2

+ + 3q2

4R+
.

The geometry of the horizon is that of a round S3, with area A = 2π2R
3/2
+ and using (A.30) gives

the geometric relation

(A.32) 6

(
πAe

2

)4/3

− 3ΛA2
e = 32π2Q2,

or equivalently

(A.33) E(Ae, Q) = A2
e

(
4π2 − 2Λ (4πAe)

2/3
)3/2

− 211π4Q3

3
√

3
= 0.

It can be seen that

(A.34) 0 ≤ Ae ≤ Amax =
π2

√
2Λ3

, 0 ≤ Q ≤ Qmax =
π

12Λ
.

Amax is achieved when Q = 0 and the cosmological and event horizon coincide.
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E(A,Q) = 0

π2
√

2Λ3

A

Q

Amax

Qmax

A- A+

Figure 1. The shaded region represents the region E(A,Q) ≥ 0.

A.2.3. Equal Angular Momenta J = J1 = ±J2 and Vanishing Electric Charge Q = 0. Consider the
one-parameter subset defined by a = b > 0 and q = 0. Then from (A.7) we find

(A.35) a2 = R+(1− 2R+Λ) , m = 2R+(1−R+Λ)3,

so that R+ < (2Λ)−1. The area of the extreme horizon is given by

(A.36) Ae =
8π2R

3/2
+

(1 + 2R+Λ)2
.

This implies the following complicated relation between A and J

(A.37)
Λ3A6

e

210π6J 2
=

(
Ae

√
A2

e + 512J 2π2 −A2
e − 128π2J 2

)3

(
Ae −

√
A2

e + 512J 2π2
)4 .

From the above bound on R+ it follows that

(A.38) 0 ≤ Ae ≤
π2

√
2Λ3

, 0 ≤ J ≤ Jmax ≡
√

2π

54Λ3/2
.

In the case J = 0 the maximal area occurs when the event horizon and cosmological horizon coincide,

while the maximum angular momentum is achieved when Ae = 4π2

9Λ3/2 .

Appendix B. Dipole Charged Black Rings

An explicit 3-parameter family of asymptotically flat stationary bi-axisymmetric black ring so-
lutions, characterized by a mass m, vanishing electric charge Q = 0, a single angular momenta J1

along the S1-direction of the black ring, and a ‘dipole charge’ D which corresponds to the flux of the
Maxwell field out of the S2 portion of the ring, was constructed in [12]. In the physics literature this
class of solutions is referred to as the ‘singly-spinning dipole ring’ for this reason. If D = 0, then the
solution reduces to the vacuum black ring with one angular momentum [13]. A remarkable feature
of this solution is that it demonstrates ‘continuous non-uniqueness’ - that is, for fixed m,J1, there
are an infinite number of distinct dipole rings. When D 6= 0, the dipole ring admits a two-parameter
extreme limit. The associated near-horizon geometry, given in [33], corresponds to an extreme hori-
zon with S1×S2 topology. Note that from the point of view of the near-horizon alone, the radius of



AREA-ANGULAR MOMENTUM-CHARGE INEQUALITIES 33

the S1 is a free parameter although for the parent asymptotically flat black hole the radius is fixed.
Accordingly, we will leave it here as a free parameter R1. The harmonic map scalars can be read off
from the horizon metric

(B.1)
dx2

C2 detλ
+ λijdφ

idφj =
dx2

C2 detλ
+
R2

1σ(1 + σ)H(x)

µ(1− σ)F (x)
(dφ1)2 +

R2
2µ

2ω2
0(1− x2)

H(x)2
(dφ2)2,

where

(B.2) F (x) = 1 + σx, H(x) = 1− µx,

and σ, µ ∈ (0, 1). The local metric extends smoothly to a metric on S1 × S2 provided conical
singularities are removed, which requires

(B.3) ω0 =
√
F (1)H(1)3 =

√
F (−1)H(−1)3.

This imposes a constraint on the parameters σ, µ, given by

(B.4) (1 + σ)(1− µ)3 = (1− σ)(1 + µ)3,

which can actually be solved explicitly

(B.5) σ =
µ(3 + µ2)

1 + 3µ2

so that

(B.6) ω2
0 =

(1− µ2)3

1 + 3µ2
.

The solution is parameterized by (R1, R2, σ, µ) subject to (B.5). We have also made the identification

(B.7) C−1 = L3 ≡ ω0R1R
2
2

√
σ(1 + σ)µ3

1− σ
.

The remaining scalars are

(B.8) χ0 ≡ 0, ζ1
0 =

L3R1(1 + σ)

R2

√
σµ3

(
1− 1

F (x)

)
, ψ2

0 = −
√

3

√
1− µ
1 + µ

· ω0µR2(1 + x)

H(x)
,

and ζ2
0 = ψ1

0 = 0.
By the definition of electric charge and χ0 = 0, we have Q = 0. The dipole charge is

(B.9) D = −vi(ψi0(+1)− ψi0(−1)) = −ψ2
0(+1) =

2
√

3µR2(1− µ2)√
1 + 3µ2

,

where vi = (0, 1) corresponds to the fact that η2 is the Killing vector field which vanishes at the
poles of the S2 of the ring horizon. The angular momenta can be derived from the twist charged
potentials, giving

(B.10) J1 =
π

2

L3R1

(1− σ)R2

√
σ

µ3
, J2 = 0 .

The area of the extreme horizon is

(B.11) Ae = 8π2L3 = 4π

√
πJ1D3

3
√

3
.
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Note that there is no limit as D → 0 or J1 → 0; that is, the extreme dipole ring requires both a
non-vanshing angular momenta along the S1 direction of the ring, and a non-vanishing dipole charge.
Therefore the area inequality is

(B.12) A ≥ 4π

√
πJ1D3

3
√

3
.

Lastly, we set x = cos θ and list the asymptotics of the harmonic map as θ → 0, π:

(B.13) V0 = − log

(
sin

θ

2

)
+O(1), ∂θV0 = − cot

θ

2
+O(sin θ),

(B.14) U0 =
1

4
log

(
µR2

2(1 + µ)3(3 + µ2)R2
1

(3µ2 + 1)(1− µ)

)
+O(sin2 θ), ∂θU0 = O(sin θ), W0 = 0,

(B.15) ψ2
0 =

√
12(1− µ2)µR2√

3µ2 + 1
cos2 θ

2
+O(sin2 θ), ∂θψ

2
0 = O(sin θ),

(B.16) ζ1
0 = −2J1

π
+O(sin2 θ) as θ → 0, ζ1

0 =
2J1

π
+O(sin2 θ) as θ → π, ζ2

0 = 0,

(B.17) χ0 = 0, ∂θζ
1
0 = O(sin θ).

Appendix C. A Magnetically Charged Kerr String

Consider the class of extreme horizons with topology S1 × S2 obtained as follows. Start with a
general vacuum Kerr black hole solution. Add a flat direction to obtain the product metric

(C.1) g = gKerr + dz2,

which is obviously Ricci flat in D = 5, and hence one has a vacuum solution with horizon topology
S1 × S2 where z is periodically identified with period 2πR. The resulting 3-parameter vacuum
solution is referred to as a ‘Kerr black string’. Note that the solution obtained is not asymptotically
flat but rather is asymptotically R3,1 × S1. Solution generating techniques, based on the underlying
harmonic map structure of the theory, can be used to generate solutions to minimal supergravity with
electric and magnetic charge (as measured from the D = 4 point of view) as well as linear momentum
along the string direction z. Taking an extreme limit of this charged Kerr string and performing the
near-horizon limit, we obtain extreme horizons with horizon topology S1×S2. Remarkably, the near-
horizon geometry of the asymptotically flat vacuum black ring is globally isometric to a subfamily
of the near-horizon geometries of the vacuum Kerr black string [33]. This strongly suggests there
could be some (yet to be explicitly constructed) family of extreme charged black rings with horizon
geometry globally isometric to that of a charged Kerr black string.

In the following we will consider an extreme horizon parameterized by (a, β,R), and we use the
shorthand cβ = coshβ, sβ = sinhβ. The Killing part of the metric is given by

λijdφ
idφj =

a4(1− x2)

Ξ(x)

(
2(c4

β + s4
β)dφ2

)2
+

[
Rdφ1 +

2a3cβsβ(c2
β + s2

β)(1− x2)

Ξ(x)
dφ2

]2

,

(C.2)
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where

(C.3) Ξ(x) = a2(1 + x2 + 4c2
βs

2
β).

The horizon scale is set by

(C.4) C−1 = L3 = 2a2R(c4
β + s4

β).

It is easily seen that ∂/∂φ2 has fixed points at x = ±1, and the above metric extends smoothly to a
cohomogeneity-one metric on S1 × S2. The remaining scalars are

(C.5) ψ1
0 = 0, ψ2

0 = −
4
√

3a3sβcβ(c4
β + s4

β)x

Ξ(x)
, χ0 =

2
√

3aL3cβsβ(c2
β + s2

β)

Ξ(x)
.

A computation gives

Θ1
0 = −

2L3Racβsβ(1− x2 + 4c2
βs

2
β)

Ξ(x)2
dx,(C.6)

Θ2
0 = −

4L3(1 + 2s2
β)(1 + 7sβ2 + 19s4

β + 24s6
β12s8

β + c2
βx

2 + s4
βx

2)

(1 + 4c2
βs

2
β + x2)3

(1− x2) dx,(C.7)

with twist potentials expressed concisely as

(C.8) ζ1
0 = −

2L3Racβsβx

Ξ(x)
, ζ2

0 = −
4L3a2(c2

β + s2
β)(1 + s2

βc
2
β)x

Ξ(x)
− χψ2

0

3
.

Owing to the functional form of χ0, ψi0 it can be verified that Q = 0, so the solution has vanishing
electric charge. There is a dipole charge

(C.9) D = 4
√

3acβsβ

as well as two angular momenta given by

(C.10) J1 = −πaR2cβsβ , J2 = −2πa2R(c2
β + s2

β) .

One can verify that the following equality holds for the extreme solution

(C.11) Ae = 8π2C−1 = 8π

√
J 2

2 −
π

12
√

3
J1D3.

Then the area inequality is

(C.12) A ≥ 8π

√
J 2

2 −
π

12
√

3
J1D3.

Lastly, we set x = cos θ and list the asymptotics of the harmonic map as θ → 0, π:

(C.13) V0 = − log

(
sin

θ

2

)
+O(1), ∂θV0 = − cot

θ

2
+O(sin θ), W0 = O(sin θ),

(C.14) U0 =
1

4
log
(
2R2a2

)
+O(sin2 θ), ∂θU0 = O(sin θ), ∂θW0 = O(1),

(C.15) ψ1
0 = 0, ψ2

0 = −D
2

+O(sin2 θ) as θ → 0, ψ2
0 =
D
2

+O(sin2 θ) as θ → π,

(C.16) χ0 = 2
√

3aRsβcβ(2c2
β − 1) +O(sin2 θ), ∂θχ0 = O(sin θ) as θ → 0, π,

(C.17) ζ1
0 = −2J1

π
+O(sin2 θ) as θ → 0, ζ1

0 =
2J1

π
+O(sin2 θ) as θ → π,
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(C.18) ζ2
0 = −2J2

π
+O(sin2 θ) as θ → 0, ζ2

0 =
2J2

π
+O(sin2 θ) as θ → π,

(C.19) ∂θψ
2
0, ∂θζ

1
0 , ∂θζ

2
0 = O(sin θ),

(C.20) Θ1 = O(sin θ)dθ, Θ2 = O(sin2 θ)dθ as θ → 0, π.

Appendix D. Lens Space L(n, 1) Horizons

The supergravity theory discussed here admits special classes of supersymmetric (BPS) solutions.
These are solutions which admit Killing spinors with respect to an appropriate connection. Within
the class of BPS solutions, there are asymptotically flat black hole solutions that must saturate the
bound M =

√
3Q [20]. A BPS black hole is necessarily extreme (see e.g. [28]), so they immediately

give rise to near-horizon geometries that will be critical points of our harmonic map equations.
There is a classification (without any isometry assumptions) of possible BPS near-horizon geometry

solutions (g, F ) [35]. The only possibilities are: (i) S1×S2 with a product metric and the S2 metric is
round; (ii) S3 with a homogeneously squashed SU(2)×U(1) metric or a lens space quotient thereof.
There is also a T 3 possibility with the flat metric, but this is ignored because such a horizon could
not correspond to an asymptotically flat black hole [18, 19]. Case (i) is realized by the family of
BPS black ring solutions [11]. The S3 possibility is realized by the asymptotically flat black hole
solutions [3, 31], and more recently asymptotically flat black holes with lens horizon L(n, 1) have
been constructed in [32, 39].

The near-horizon geometries of case (ii) above are all locally isometric, with

gNH = −r
2dv2

α2
+

4αdvdr

j
dvdr +

4β

nα2
rdv(dφ1 +

n

2
cos θdφ2) + ds2

3,(D.1)

FNH =

√
3

α
d

[
rdv − 2β

n
(dφ1 +

n

2
cos θdφ2)

]
,(D.2)

where j =
√

2α3 − β2. The orientation is such that εvrθφ1φ2 > 0. The solution has two continuous

parameters α, β satisfying the regularity conditions α > 0, 2α3 − β2 > 0. The angles φi both have
period 2π and θ ∈ (0, π). The positive integer n labels the horizon metric

(D.3) γmldy
mdyl =

4j2

n2α2

(
dφ1 +

n

2
cos θdφ2

)2
+ 2α(dθ2 + sin2 θ(dφ2)2).

It is important to note that many references work with the angle φ̂ = 2φ1 with period 4π. A
computation yields the harmonic map

(D.4) ψ1
0 =

2
√

3β

nα
, ψ2

0 =

√
3β cos θ

α
, χ0 = −4

√
3α

n
cos θ,

(D.5) ζ1
0 =

16β cos θ

n2
, ζ2

0 = −4β sin2 θ

n
.

Thus the angular momenta and charge, as defined in terms of potentials given above, are

(D.6) J1 = −4πβ

n2
, J2 = 0, Q =

2
√

3πα

n
.

Observe that the angular momentum associated to ∂φ2 vanishes. However, the angular momenta
defined on the horizon need not equal the ones computed at spatial infinity because the gauge fields
carry angular momenta in the black hole exterior. This is related to the fact the Maxwell equation
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has a ‘source’ term so that there are additional volume contributions when comparing integrals
over the horizon and the boundary S3 at infinity. Indeed, the black lens spacetimes must have two
non-vanishing angular momenta as measured with respect to observers at infinity.

The area formula is

(D.7) Ae =
32π2

n

√
2α3 − β2 = 8π

√
4nQ3

3
√

3π
− n2J 2

1 .

For n = 1 this is the well-known formula for the area of the BMPV black hole [3].
Now we compute the asymptotics of the harmonic data. Observe that the Killing vectors η(1) =

n
2∂φ1 − ∂φ2 and η(2) = n

2∂φ1 + ∂φ2 vanish at θ = 0 and θ = π, respectively. Clearly the direction
vectors are not same as in Section 6. However, according to [21], there exists a matrix A ∈ SL(2,Z)
such that

(D.8) η̂i = Ajiη(j), i, j = 1, 2,

and η̂(i)â
i
+ and η̂(i)â

i
− with â+ = (1, 0) and â− = (1, n) vanish at θ = 0 and θ = π, respectively. In

other words, if we select the functions φ̂i such that Lη̂(i)
φ̂i = 1, we have

(D.9) η(1) =
n

2
∂φ1 − ∂φ2 = ∂φ̂1 = η̂iâ

i
+, η(2) =

n

2
∂φ1 − ∂φ2 = ∂φ̂1 + n∂φ̂2 = η̂iâ

i
−.

The transformation from (φ1, φ2) to (φ̂1, φ̂2) is

(D.10)

(
φ1

φ2

)
= C

(
φ̂1

φ̂2

)
, C =

(
n
2 0
−1 2

n

)
.

Then there exists a matrix B =

(
1 1
0 n

)
such that (φ̂1, φ̂2)T = B(φ̄1, φ̄2)T . Therefore we obtain

(D.11)

(
φ1

φ2

)
= Z

(
φ̄1

φ̄2

)
, Z = CB =

(
n
2

n
2

−1 1

)
,

and λ̄ = ZTλZ. The metric functions are then

(D.12) U0 =
1

4
log

(
detλ

n2 sin2 θ

)
, W0 = sinh−1

(
n2

4 λ11 − λ22

e2U0 sin θ

)
,

(D.13) V0 =
1

4
log

cos2 θ
2

(
n2

4 λ11 − nλ12 + λ22

)
sin2 θ

2

(
n2

4 λ11 + nλ12 + λ22

)
 ,

(D.14)

(
ψ̄1

0

ψ̄2
0

)
= ZT

(
ψ1

ψ2

)
=

(
n
2ψ

1 − ψ2

n
2ψ

1 + ψ2

)
.

The asymptotics of the harmonic map as θ → 0, π are as follows:

(D.15) V0 =
1

2
log

(
2α3

j2

)
+O(sin2 θ), ∂θV0 = O(sin θ),

(D.16) U0 =
1

4
log

(
8j2

αn4

)
, ∂θU0 = 0, W0 = O(sin θ), ∂θW0 = O(1),

(D.17) ψ̄1
0 = O(sin2 θ

2
), ∂θψ̄

1
0 = O(sin θ), ψ̄2

0 = O(cos2 θ

2
), ∂θψ̄

2
0 = O(sin θ),
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(D.18) ζ1
0 = −2J1

π
+O(sin2 θ

2
) as θ → 0, ζ1

0 =
2J1

π
+O(cos2 θ

2
) as θ → π,

(D.19) χ0 =
2Q

π
+O(sin2 θ

2
) as θ → 0, χ0 = −2Q

π
+O(cos2 θ

2
) as θ → π,

(D.20) ∂θχ0 = O(sin θ), ζ2
0 = O(sin2 θ), ∂θζ

i
0 = O(sin θ).
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[6] P. T. Chruściel, J. L. Costa, and M. Heusler. Stationary black holes: uniqueness and beyond. Living Rev. in

Relativity, 15(7), 2012.
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